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Preface

The measure of image (videos) quality remains a research challenge and a very
active field of investigation considering image processing. One solution consists of
providing a subjective score to the image quality (according to a reference or
without reference) obtained from human observers. The setting of such
psycho-visual tests is very expensive (considering time and human organization)
and needs clear and strict proceedings. Algorithmic solutions have been developed
(objective scores) to avoid such tests. Some of these techniques are based on the
modeling of the Human Visual System (HVS) to mimic the human behavior, but
they are complex. In the case of natural scenes, a great number of image (or video)
quality databases exist that makes possible the validation of these different tech-
niques. Soft computing (machine learning, fuzzy logic, etc.), widely used in many
scientific fields such as biology, medicine, management sciences, financial sciences,
plant control, etc., is also a very useful cross-disciplinary tool in image processing.
These tools have been used to establish image quality and they are now well
known.

Emerging topics these last years concern image synthesis, applied in virtual
reality, augmented reality, movie production, interactive video games, etc. For
example, unbiased global illumination methods based on stochastic techniques can
provide photo-realistic images in which content is indistinguishable from real
photography. But there is a price: these images are prone to noise that can only be
reduced by increasing the number of computed samples of the involved methods
and consequently increasing their computation time. The problem of finding the
number of samples that are required in order to ensure that most of the observers
cannot perceive any noise is still open since the ideal image is unknown.

Image Quality Assessment (IQA) is well known considering natural scene
images. Image quality (or noise evaluation) of computer-generated images is
slightly different, since image generation is different and databases are not yet
developed. In this short book, we address this problem by focusing on visual
perception of noise. But rather than use known perceptual models, we investigate
the use of soft computing approaches classically used in the Artificial Intelligence
(AI) areas such as full-reference and reduced-reference metrics. We propose to use
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such approaches to create a machine learning model based on learning machines
such as SVMs and RVMs in order to be able to predict which image highlights
perceptual noise. We also investigate the use of interval-valued fuzzy sets as
no-reference metric. Learning is performed through the use of an example database
which is built from experiments of noise perception with human users. These
models can then be used in any progressive stochastic global illumination method
in order to find the visual convergence threshold of different parts of any image.

The short book is organized as follows: after a brief introduction (Chap. 1),
Chap. 2 describes the Monte Carlo methods for image synthesis we use, and then
chapter briefly describes the visual impact of rendering on image quality and the
interest of a noise model. In Chap. 4, image quality evaluation using SVMs and
RVMs is introduced and in Chap. 5 new learning algorithms that can be applied
with interesting results are presented. Chapter 6 introduces an original method
obtained from the application of fuzzy sets entropy. Finally, the short book is
summarized with some conclusions in Chap. 7.

The goal of this book is to present an emerging topic, that is to say IQA for
computer-generated images, to students (and others) practitioners of image pro-
cessing and related areas such as computer graphics and visualization. In addition,
students and practitioners should be familiar with the underlying techniques that
make this possible (basics of image processing, machine learning, fuzzy sets). This
monograph will be interesting for all people involved in image generation, virtual
reality, augmented reality, and all new trends emerging around these topics.

Calais Cedex, France André Bigand
Dunkirk, France Julien Dehos
Dunkirk, France Christophe Renaud

Beirut, Lebanon Joseph Constantin
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Chapter 1 ®)
Introduction Check for

Image Quality Assessment (IQA) aims to characterize the visual quality of an image.
Indeed, there are many sources of image degradation, for example, optical distortion,
sensor noise, compression algorithms, etc., so IQA is useful to evaluate the perceived
quality of an image or to optimize an imaging process. IQA has been well studied for
natural-scene images (captured by a camera) but there is far less work for computer-
generated images (rendered from a virtual scene). This book aims to review the recent
advances in Image Quality Assessment for computer-generated images.

1.1 Natural-Scene Images, Computer-generated Images

Natural-scene images are obtained by sampling and digitizing the light coming from
a natural scene, with a sensor (CCD, CMOS, etc.). Many aspects are important to
obtain “good quality” images: lighting conditions, optical system of the camera,
sensor quality, etc. An exhaustive presentation about those topics is given in (Xu
et al. 2015). The authors present the methods involved in subjective visual quality
and in objective visual quality assessment. Particularly, they also present image and
video quality databases which are very important to compare the obtained scores,
and they address the interest of machine learning for IQA. So, we will not consider
these topics once more and we recommend the reader to consult this presentation if
necessary.

High-quality computer-generated images are obtained from computer simula-
tions of light transport in virtual 3D scenes. Computing such a photo-realistic image
requires to model the virtual scene precisely: light sources, object geometries, object
materials, virtual camera, etc. It also requires to use a physically based rendering algo-
rithm which accurately simulates the light propagation in the virtual scene and the
light-matter interactions. Today, the vast majority of the physically based renderers

© The Author(s) 2018 1
A. Bigand et al., Image Quality Assessment of Computer-generated Images,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-73543-6_1



2 1 Introduction

are based on stochastic methods. Path tracing (Kajiya 1986) is a core rendering
algorithm which generates many random paths from the camera to a light source,
through the virtual scene. Since the paths are chosen randomly, the light contribution
can change greatly from one path to another, which can generate high-frequency
color variations in the rendered image (Shirley et al. 1996) known as perceptual
noise. The Monte Carlo theory ensures that this process will converge to the correct
image when the number of sample paths grows; however, this may require a great
number of paths and a high computation time (typically hours per image). Thus, to
render an image in an acceptable time, it is important to compute a number of paths
as small as possible. However, it is difficult to predict how many sample paths are
really required to obtain a “good quality” image or which random paths are the best
for increasing the convergence rate. Moreover, it is even difficult to determine if a
rendered image is sufficiently converged.

To summarize, the main differences between natural-scene images and computer-
generated images (for IQA) are the following:

e Since perceptual noise is intrinsic to the image generation process, a computer-
generated image is converged when no perceptual noise is noticeable in the final
image.

e Image databases for computer-generated images are limited and costly to obtain
(psycho-visual index obtained from human observers).

e Noise features are the most important image features to consider for computer-
generated images.

The final use of computer-generated images is to be seen by human observers who
are generally very sensitive to image artifacts. The Human Visual System (HVS) is
endowed with powerful performances but is a very complex process. Consequently,
perception-driven approaches were proposed to determine if rendered image are con-
verged. The main idea of such approaches is to replace the human observer by a vision
model. By mimicking HVS, such techniques can provide important improvements
for rendering. They can be used for driving rendering algorithms to visually satis-
factory images and to focus on visually important features (Mitchell 1987; Farrugia
and Péroche 2004; Longhurst et al. 2006). HVS models provide interesting results
but are complex, still incomplete, and difficult to set up, and generally require rela-
tively long computation times. Therefore, the methods presented in this book focus
on the use of a new noise based perceptual index to replace psycho-visual index
in the perception-driven model assessment. Perceptual noise is considered from a
machine learning point of view (noise features) or a soft computing point of view
(fuzzy entropy used to set up noise level).

1.2 Image Quality Assessment Models

Image quality assessment models are very important to characterize the visual quality
of an image. For example, they are of great interest for image compression (JPEG
models) and natural image characterization (Lahoudou et al. 2010). In the literature,
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IQA models are usually classified into three families (see (Lahoudou et al. 2011;
Beghdadi et al. 2013) for a brief review of IQA and machine learning):

o Full-reference models that use the original version of the image for estimating
the quality of the processed version. These models are the most used methods to
evaluate image quality (for example, the well-known PSNR and SSIM). They are
easy to compute in real time and correlated with human subjective appreciation
but require a reference image. Unfortunately, these models are not applicable for
computer-generated images since the final reference image is not already known
during the image generation process.

e No-reference models that evaluate the quality of images without access to reference
images. Some recent papers (Ferzli and Karam 2005; Zhang et al. 2011) proposed
no-reference quality assessment methods with good results but limited to JPEG
images. Other methods were proposed for computer-generated images with some
success (Delepoulle et al. 2012) but a complete framework has to be yet defined.

e Reduced-reference models that analyze the processed image using some relevant
information to calculate the quality of the result image. This model seems to be
particularly interesting for our study as we will show in the following of the book.

In the last decade, numerous IQA methods for computer-generated images have
been proposed but the resulting models are limited in practice and they are still under
investigation. Currently, the classical model to characterize image quality remains
psycho-visual experiments (Human in the loop experiment (Faugeras 1979)).

1.3 Organization of the Book

In this book, we assume that the reader is familiar with the basic aspects of machine
learning and image processing, and we only focus on the visual quality assessment
of computer-generated images using soft computing. We present recent techniques
to assess if such a photo-realistic computer-generated image is noisy or not, based
on full-reference, reduced-reference, and no-reference image quality methods, using
learning machines and fuzzy sets. These techniques make it possible to set up uncer-
tainty brought by perceptual noise affecting the image synthesis process. Note that
we mainly focus on grayscale images, or more precisely the “L”” component of “Lab”
color images, since noise mainly affects this component, (Carnet et al. 2008).

In Chap.2, we introduce image rendering to the reader. We present the basic
notions of light transport and the equations that formalize rendering. We then recall
the Monte Carlo method and detail the path-tracing algorithm which is the core of
many renderers currently used in the computer graphics industry.
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In Chap. 3, we study the visual impact of the rendering process on the quality of
the rendered image. We present experimental results obtained from a path-tracing
renderer and illustrate the influence of several parameters (virtual scene and rendering
parameters) on the visual quality of the rendered image.

Chapter 4 introduces image quality evaluation using full-reference methods.
We present a conventional way to obtain noise attributes from computer-generated
images and also introduce the use of deep learning to automatically extract them.
We then present how to use Support Vector Machines (SVM) and Relevance Vector
Machines (RVM) as image quality metrics.

Chapter 5 introduces image quality evaluation using reduced-reference methods.
We present Fast Relevance Vector Machines (FRVM) and explain image quality
evaluation using FRVM and inductive learning. Both methods are then compared on
experimental results.

Chapter 6 introduces no-reference methods using fuzzy sets. We present the
Interval-Valued Fuzzy Set (IVFS) and an entropy based on IVFS. We then detail
an image noise estimation method which uses IVFS and presents promising experi-
mental results obtained with computer-generated images.

In conclusion, Chap.7 summarizes the important notions presented in this book
and gives some perspectives.
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Chapter 2 )
Monte Carlo Methods for Image e
Synthesis

2.1 Introduction

Image synthesis (also called rendering) consists in generating an image from a virtual
3D scene (composed of light sources, objects, materials, and a camera). Numerous
rendering algorithms have been proposed since the 1970s: z-buffer (Catmull 1974),
ray tracing (Whitted 1980), radiosity (Goral et al. 1984), path tracing (Kajiya 1986),
and Reyes (Cook et al. 1987)...

Physically based rendering algorithms (also called photo-realistic rendering algo-
rithms) try to satisfy the physical rules describing the light transport. These algorithms
are commonly used to generate high-quality images (see Fig.2.1), for example, in
the cinema industry, and include path tracing, photon mapping (Jensen 2001), bidi-
rectional path tracing (Lafortune and Willems 1993; Veach and Guibas 1994), and
metropolis light transport (Veach and Guibas 1997)...

In this book, we only consider the path-tracing algorithm since it is widely used
in modern renderers and is the basis of many other rendering algorithms. In this
chapter, we present the fundamental notions of light transport, which physically
describes rendering. Then, we present the Monte Carlo method, which is the core
computing method used in physically based rendering algorithms. Finally, we detail
the path-tracing algorithm.

2.2 Light Transport

2.2.1 Radiometry

Radiometry is the science of measurement of electromagnetic radiation, including
visible light. It is particularly useful for describing light transport and rendering algo-
rithms (Nicodemus et al. 1977; Glassner 1994; Jensen 2001; Pharr and Humphreys

© The Author(s) 2018 7
A. Bigand et al., Image Quality Assessment of Computer-generated Images,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-73543-6_2
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Fig. 2.1 Physically based
algorithms can render
high-quality images from a
virtual 3D scene

2010; Jakob 2013). The notations used in this chapter are mainly inspired from Eric
Veach’s PhD thesis (Veach 1997).

2.2.1.1 Radiant Flux

Radiant flux (@) is the quantity of energy per unit of time (watt):

dQ
®=—[W 2.1
” (W] (2.1)
Radiant flux measures the light received or emitted by a point of the scene (see
Fig.2.2).

2.2.1.2 Radiance

Radiance (L) is the flux per unit of area and per unit of projected solid angle (watt
per square meter per steradian):

" d?2p(x — x) _2
Lx=x) = s o mdamaany "

s, (2.2)
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() (b)

S N

Emitted radiant flux Received radiant flux

Fig. 2.2 The radiant flux is the quantity of light emitted from a point or received by a point
)

w(b)\C{)/ (
SN <

Beam at point x in direction ® Emitted radiance Received radiance

(a)

Fig. 2.3 Radiance is the flux emitted or received through a beam in a given direction

where G is the geometric function between the emitting surface and the receiv-
ing surface. The notation x — x’ indicates the direction of light flow. The notation
G (x <> x') indicates a symmetric function.

Radiance measures the flux received or emitted by a point through a beam (see
Fig.2.3). It is particularly useful for describing light transport in a scene.

2.2.1.3 Bidirectional Reflectance Distribution Function

The Bidirectional Reflectance Distribution Function (BRDF) f; describes the ratio
of radiance reflected from an incoming direction to an outgoing direction:

dL(x" — x")

[sr™ 1] (2.3)
L(x - x")G(x < x")dA(x)

fix = x' = x") =

The BRDF is useful for defining how a material reflects light (see Fig.2.4).
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Fig. 2.4 The BRDF
describes how a material
reflects light from an
incoming direction (x — x’)
toward an outgoing direction
x' = x")

2.2.2 Formulation of Light Transport

Using the previous radiometric quantities, we can formulate light transport, from the
sources of the scene to the camera, and thus synthesize an image. Note that light
transport can be formulated from light sources to camera as well as from camera to
light sources, since it satisfies energy conservation.

2.2.2.1 Measurement Equation

Rendering consists in computing the radiance received by each pixel of the camera.
The intensity / of a given pixel is defined by the measurement equation:

I = / W,(x' = x")L(x' = x"G(x' < x")dA(X"dA(x"), 2.4)
M X M

where . is the set of all points in the scene and W, the response of the camera. The
measurement equation simply states that the intensity of a pixel is the sum of the
radiances from all points x” of the scene to all points x” on the pixel (see Fig.2.5).

Fig. 2.5 The intensity of a ?
pixel can be computed using

the measurement equation, N\

i.e., the integral of radiance ’4 = Py Q
from scene points to pixel o
points &3
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(@ (b)

Fig. 2.6 The rendering equation defines how the light is reflected from all incoming directions to
an outgoing direction (a). It can be applied recursively for incoming directions to fully compute
light transport in the scene (b)

2.2.2.2 Rendering Equation

The measurement equation describes how a point x” of the scene contributes to the
intensity of a pixel at a point x”. To synthesize an image, we also have to compute
the radiance from the scene point x’ toward the pixel point x”, which is described by
the rendering equation:

L(x' = x"y=L,(x' = x" —|—/ fi(x = x' = xX")L(x — x)G(x < x')dA(x),
M

(2.5)
where L, is the light emitted at point x’ (light source). Thus, the radiance received
by x” from x’ is the sum of two terms: the light emitted by x’ toward x” and the light
coming from all points x of the scene and reflected at x” toward x” (see Fig. 2.6a).

Thus, we can compute the light at x” using the rendering equation. However,
this requires to compute the light coming from other points x, i.e., to compute the
rendering equation recursively at these points (see Fig. 2.6b).

2.3 Monte Carlo Integration

The measurement Eq. 2.4 and the rendering Eq.2.5 are well-defined integral equa-
tions. However, they are difficult to solve using analytic solutions or deterministic
numerical solutions, due to the complexity of the integrands and the high number of
dimensions. Stochastic methods, such as Monte Carlo integration, are more suitable
for computing such equations. Monte Carlo integration is the core of many physically
based rendering algorithms such as path tracing.
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2.3.1 Monte Carlo Estimator
Monte Carlo integration aims at evaluating the integral:
I = f J)du(x), (2.6)
2

where du is a measure on the domain £2. This integral can be estimated by a random
variable Iy:

N
Z f(— (2.7)

where X1, ..., X are points of £2 sampled independently using the density function
p. We can show the validity of this estimator by computing the expected value of
1 N-

(2.8)
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using the linearity and the definition of expected value.

Thus, Monte Carlo integration converges to the correct solution. Moreover, it
is simple to implement since it only requires to evaluate f and to sample points
according to p. Finally, integrating high-dimensional functions is straightforward
and only requires to sample all dimensions of the domain.

2.3.2 Convergence Rate

The variance of the Monte Carlo estimator decreases linearly with the number of
samples:
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Thus, the RMS error converges at arate of & (\/Lﬁ) This convergence rate is slow

(increasing the number of samples by a factor of four only reduces the integration
error by a factor of two) but it is not affected by the number of dimensions.

2.3.3 Variance Reduction Using Importance Sampling

Many variance reduction techniques have been proposed to improve convergence
rate of Monte Carlo methods. One of them, importance sampling, is classically
implemented in physically based renderer.

The basic idea of the importance sampling technique is to sample important
regions of the domain with a higher probability. Ideally, we would choose a den-
sity function p proportional to f:

p(x) x f(x) (2.11)
which leads to a zero-variance estimator, i.e., constant for all samples X:

LAC.ON (2.12)

pX)
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In practice, we cannot choose such a density function p since the required constant
cisthe value we are trying to compute. However, variance can be reduced by choosing
a density function which has a shape similar to f. In physically based renderers,
density functions are carefully implemented by considering the position of light
sources and the reflectance of materials.

2.4 Path Tracing

2.4.1 Random Walk

Using the measurement Eq.2.4, we can compute a pixel by integrating radiance
coming from all directions. To compute radiance in a given direction, we can trace
a light ray in this direction until an object is reached and compute the reflected
radiance using the rendering Eq.2.5. However, this equation requires to integrate
radiance coming from all directions. This means that we have to trace many rays
(for all these directions) and that we have to repeat this process recursively each time
one of these rays reaches an object (i.e., tracing new supplementary rays). This naive
approach has a huge memory cost and is unfeasible in practice.

The basic idea of the path-tracing algorithm is to randomly sample only one
direction for evaluating the rendering equation. Thus, we can sample apath x, . .., x;
from the camera to a light source and compute the contribution of this path to the
pixel value (see Fig.2.7). This can be seen as a random walk, which means we can
estimate the value of a pixel by randomly sampling many paths X; and by computing
the mean value of the contributions:

K—1

F(Xi) = We(x1, x2) |:1_[ f.r(xk+laxk~xkI)G(xk,xkl)i| Le(xg, xk-1)G(xg, xk-1) (2.13)

k=2

2.4.2 The Path-Tracing Algorithm

The path-tracing algorithm has been proposed by James T. Kajiya in Kajiya (1986).
This algorithm implements a random walk for solving the rendering equation. It is
currently used in many physically based renderers.

A pseudo-code implementation of path tracing is given in Algorithm1. As
explained previously, the algorithm computes each pixel by randomly sampling paths
and computing the mean contribution of the paths for the pixel.
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Fig. 2.7 A path (for example X; = x1, x2, x3, x4) models the light transport from a light source
(x1) to a camera (x4) after reflection in the scene (x> and x3). The contribution of the path can be
computed by developing the rendering equation and the measurement equation: F(X;) = L.(x; —
x2)G(x1 < x2) fs(x1 = x2 = x3)G(x2 <> x3) f(x2 = x3 = x4)G(x3 <> x4) We(x3 — x4)

Algorithm 1 : Path Tracing (using N paths per pixel and a probability density function p)

for all pixels in the image do
Iy < 0 {initialize the computed intensity of the pixel}
fori < 1to N do
sample a point x; in the pixel
P; < p(x1) {initialize the probability of the path}
F; < 1 {initialize the contribution of the path}
loop
sample a reflected direction and compute the corresponding point x; in the scene
P; < Pi x p(xk, Xk—1)
if x; is on a light source then
exit loop
else
Fi < Fi X fs(kt1, Xk, Xe—1) G (Xk, Xg—1)
end if
end loop
Fi < Xi X We(x1, x2)Le(xk, xk—1)G(xk, XK —1)
Iy < Iy + v ;,i
end for
pixel < Iy
end for

2.4.3 Global Illumination

Algorithm 1 is a straightforward but inefficient implementation of path tracing and
can be improved in many ways. A major source of inefficiency stands in the fact that
reflected directions are sampled independently from light sources. Indeed, a light
source which directly lights a point of the scene is easy to compute and contributes
probably greatly to the illumination of the point. On the contrary, light coming
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(a) Full lighting (b) Direct lighting (¢) Indirect lighting

Fig. 2.8 Global illumination (a) of a scene can be decomposed in direct lighting (b) and indirect
lighting (c). The direct lighting is the light coming from a source to a point and reflected toward the
camera. The indirect lighting is the light coming from a source and reflected several times before
reaching the camera

indirectly from a source, after several reflections on objects, is difficult to compute
and may contribute little to the illumination of the point (see Fig.2.8) (Nayar et al.
2006).

Thus, a very common optimization implemented in path tracers consists in sam-
pling light sources directly (Vorba and Kfivanek 2016): at each intersection point,
a ray is sent toward a light source to estimate direct lighting and the path is traced
recursively by sampling directions to estimate indirect lighting. This amounts to par-
titioning the integration domain in the rendering equation, which still gives valid
results while improving the convergence speed.

2.5 Conclusion

An image, captured by a camera or seen by the Human Visual System (HVS), is a
measure of the light (radiance) propagated in the scene. Photo-realistic image syn-
thesis consists in computing an image from a virtual 3D scene, using physical laws
of light transport such as the rendering equation. Current rendering algorithms are
based on stochastic methods (Monte Carlo integration, Markov chain) to compute
realistic images. Such an algorithm gradually converges to the expected image of the
virtual scene but this generally requires a lot of computation time. Many improve-
ments have been proposed to speed up the convergence of the rendering algorithms.
The remaining of this book aims to characterize the noise present in rendered images
(resulting variance of the rendering algorithm).
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Chapter 3 ®)
Visual Impact of Rendering on Image e
Quality

3.1 Introduction

To generate photo-realistic images, modern renderers generally use stochastic algo-
rithms such as the path-tracing algorithm. These algorithms can produce high-quality
images but may require a long computation time. Therefore, rendering is generally
stopped after a given amount of time and the output image may not be fully converged.
In this case, the resulting variance can be seen as noise.

In this chapter, we present the impact of several parameters on the visual quality of
the rendered images. More specifically, we study some parameters of the rendering
algorithm (path length, number of paths) and the scene complexity (light source,
scene geometry, materials). The images presented in this chapter were rendered using
the path-tracing algorithm implemented in PBRT (Pharr and Humphreys 2010), a
well-known open-source renderer developed for research purposes. Two very classic
scenes are studied here, the Cornell box scene (Goral et al. 1984) and the glass egg
scene (Veach and Guibas 1995) (see Fig.3.1).

3.2 Influence of Rendering Parameters

3.2.1 Path Length

Basically, the path-tracing algorithm traces a path in the scene until a light source is
reached. High-length paths are, therefore, costly to compute but they are necessary
to compute complex lighting.

Since reflected radiance is smaller than incident radiance, each reflection step
reduces the potential contribution of the path so the potential contribution of high-
length paths to the final pixel value is generally negligible. Renderers generally set a
maximum path length to avoid computing costly high-length paths but this introduces

© The Author(s) 2018 19
A. Bigand et al., Image Quality Assessment of Computer-generated Images,
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(a) TheCornell box scene (diffuse materials (b) The glass egg scene (diffuse materials
+ one area light source) is a classic scene + one specular object + directional light
for testing rendering with global illumination sources) is a classic scene for testing render-
and color bleeding. Rendered with: max path ing with global illumination and light caus-
length = 16, number of paths per pixel = 1024. tics. Rendered with: max path length = 32,
number of paths per pixel = 524 288.

Fig. 3.1 Reference scenes studied in this chapter, rendered using the PBRT path tracer

(a) Max path length: 1, (b) Max path length: 2, (¢) Max path length: 4, (d) Max path length: 8,
rendering time: 14min rendering time: 41min rendering time: 72min rendering time: 86min

Fig. 3.2 Impact of maximum path length for rendering the Cornell box scene. High-length paths
are necessary to render complex lighting but increase computation time

(a) Max path length: 1, (b) Max path length: 2, (¢) Max path length: 4, (d) Max path length: 8,
rendering time: 6h rendering time: 18h rendering time: 40h rendering time: 45h

Fig. 3.3 Impact of maximum path length for rendering the glass egg scene. Light transport is quite
complex in this scene, so the bias introduced by setting a low value for the maximum path length

is clearly visible
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a bias (see Figs. 3.2 and 3.3). To reduce this bias, renderers also implement Russian
roulette (Arvo and Kirk 1990), an unbiased technique for stopping the tracing of a
path with a probability proportional to the potential contribution of the path (a path
with a low potential radiance is more likely to be stopped).

3.2.2 Number of Path Samples

Stochastic rendering algorithms, like path-tracing, sample many paths progressively
and converge to the solution of the rendering equation. However, the convergence
is slow so rendering a high-quality image requires a long computation time. Even
worse, predicting how many path samples are necessary to compute a satisfactory
image is difficult. In fact, determining if a rendered image converged is already a
problem.

When an image has not fully converged, the resulting variance is visible in the
form of noise (see Figs. 3.4 and 3.5). A common problem for renderer users is thus to

(a) Rendered image (1 SPP)  (b) Rendered image (4 SPP) (c) Rendered image (1024 SPP)

(d) Relative error (1 SPP) (e) Relative error (4 SPP) (f) Relative error (1024 SPP)

Fig. 3.4 Impact of the number of samples per pixel (SPP) on the rendered image for the Cornell
box scene. When only a few SPP are computed the rendered image is very noisy but this noise is
reduced when more samples are computed. We may notice that noise is mainly present in indirectly
lit area of the scene, since renderers compute direct lighting separately (as explained in Sect. 2.4.3).
Legends for relative error: in blue, the rendered pixel is too dark; in red, the rendered pixel is too
bright
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(a) Rendered image (1 SPP)  (b) Rendered image (16 SPP) (c) Rendered image (1024 SPP)

(d) Relative error (1 SPP) (e) Relative error (16 SPP) (f) Relative error (1024 SPP)

Fig. 3.5 Impact of the number of SPP on the rendered image for the glass egg scene. Lighting
is complex in this scene so many path samples should be computed. Even with 1024 SPP, the
noise is still important and some areas are still underestimated (for instance, highlights and caustics
produced by the glass egg)

correctly set the number of Samples Per Pixel (SPP), which should be low enough for
limiting computation time but high enough for limiting visible noise. In practice, the
number of path samples to use for rendering a scene is determined by human experts
and this number is generally intentionally overestimated for rendering high-quality
images.

3.3 Influence of the Scene

3.3.1 Light Sources

Theoretically, any object can emit light, from any point on its surface and toward
any directions. This is implemented with the emissive function L, in the rendering
Eqg. (2.5). For most objects, the emissive function can be neglected (pure reflectors).
The few objects which really emit light (the light sources) are considered separately
to compute rendering more efficiently (using the direct lighting sampling technique
explained in Sect.2.4.3).

Renderers classically implement several light source models. An area light source
is an object which emits light diffusely (uniformly in all directions) over its surface.
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(a) 1 SPP (b) 1024 SPP (c) 131072 SPP

Fig. 3.6 A point-light source is more difficult to renderer using the path-tracing algorithm, since
this light model has no area. This results in a higher variance so the convergence is slower (131 072
SPP) than for the reference scene (1024 SPP, see Fig.3.4)

Fig. 3.7 Relative difference A0
between renfiered images. e —

when replacing the area light i M
source with a point-light
source, in the Cornell box
scene. Legend: in blue, the
modified scene is darker than
the reference scene; in red, it
is brighter

This is a general model which is very frequently used in physically based render-
ers. An omnidirectional point-light emits light from a point toward all directions
uniformly. This model is a simplification of a small light source quite far away (for
example a light bulb) and is often used in real-time renderers. A directional light
source emits light in a single direction (from an infinitely far away position). This
model is classically used to simulate sunlight.

Light models are part of the scene description and, therefore, impact the rendered
image. Moreover, each light model should be implemented specifically in the ren-
dering algorithm, which also impacts the rendered image. For example, replacing
the area light source by a point-light source in the Cornell box scene changes soft
shadows to hard shadows (see the shadows produced by the boxes in Figs. 3.1a, 3.6c,
and 3.7). This also greatly impacts the visible noise in the rendered images: the area
light source is easily found by path-tracing hence the fast convergence, whereas the
point-light source is hard to find using path tracing (a point has no area) hence the
slow convergence (see Fig.3.6).
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3.3.2 Scene Geometry

With physically based rendering, all objects can contribute to the global illumination
of the scene, which means an object can influence the light reflected by another
object in the rendered image (see Fig.2.4.3). This is particularly important in a
closed interior scene, since all the light emitted by light sources will finally reach the
camera. On the contrary, in an opened outdoor scene most of the sunlight is reflected
by objects toward the sky and will never reach the camera.

Thus, if we remove some parts of a scene (for instance, the ceiling or some walls
of an interior scene), the scene is more opened and indirect lighting is less important
in the rendered image since a large part of the emitted light can escape the scene (see
Fig.3.9). This escaping light can just be discarded for the rendering computation but
the remaining indirect light still has to be computed so the corresponding variance
is not significantly reduced (see Fig. 3.8).

(a) 1 SPP (b) 4 SPP (c) 1024 SPP

(d) 1 SPP (e) 1024 SPP (f) 524 288 SPP

Fig. 3.8 Impact of the geometry on rendered images. Top row: removing the ceiling in the Cornell
box scene. Bottom row: removing the ceiling and the right wall in the glass egg scene. Making
a scene more opened has no significant impact on rendering convergence (rendering requires the
same number of SPP)
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(a) The Cornell box scene when removing the (b) The glass egg scene when removing the

ceiling. Indirect lighting in the shadows of the ceiling and a wall. The indirect lighting is

boxes is reduced but it is still important since greatly reduces here since the scene is now

the scene is still mostly closed. quite opened and since the ceiling greatly
contributes to global illumination in the orig-
inal scene.

Fig. 3.9 The relative difference between rendered images when removing some objects of the
scene

3.3.3 Materials

A material describes how an object reflects (or transmits) light. Real materials can be
very complex so renderers generally propose a few models, which can be combined
to describe more complex materials. Material models are generally an intermediate

(a) 1 SPP (b) 1024 SPP (c) 524 288 SPP

Fig. 3.10 Material models greatly impact the rendered image and may impact the convergence.
With a diffuse egg, the color-bleeding on the right-side wall converges slowly. In the original scene,
the corresponding caustics are also slow to converge but the small caustics on the table converge
fast
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Fig. 3.11 The relative 10
difference between rendered
images when using a diffuse
material in the glass egg
scene. The specular
highlights on the egg is
replaced by a smooth diffuse
highlight and the caustics on
the table is replaced by 'Q
color-bleeding on the '
right-side wall

=0.50

-0.75

~1.00

between two particular models: the specular model and the diffuse model. The spec-
ular model reflects light in one specific direction (e.g., mirrors) and the diffuse model
reflects light in all directions uniformly (e.g., rough materials).

Materials greatly contribute to global illumination. A diffuse material tends to
smoothly spread the color of the object onto neighboring objects (color-bleeding).
A specular material tends to show highlights on the surface of the object and to
produce sharp caustics onto neighboring objects (see Figs.3.11 and 3.10). If the
caustics produced by specular objects have a limited area, they may be faster to
converge than large color-bleeding produced by diffuse objects.

3.4 Conclusion

Stochastic rendering algorithms, such as path-tracing, generate theoretically correct
images with an infinite number of paths of a potentially infinite length, i.e., an infi-
nite rendering time. To render an image in a finite time, the number of paths and the
maximum path length are two parameters that the user has to set before launching
the rendering. As a result, the missing computation can be seen in the final image as
rendering noise (high-frequency “grainy” variations) and artifacts (black or under-
illuminated areas). Limiting the number of paths introduces a remaining variance,
which can be seen as rendering noise in the final image. Limiting the maximum path
length introduces a bias, which can be seen as artifacts in the final image. These prob-
lems are more important in scenes with complex lighting conditions such as multiple
reflection (close scene), caustics (specular materials), small light sources, etc.

To analyze the quality of the final image, it would be interesting to have a model
of the noise introduced by a rendering algorithm. However, such a model can be
difficult to obtain and is specific to the considered algorithm whereas many algorithms
are implemented in modern renderers. In the remaining of this book, we use some
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machine learning techniques to characterize the visual image quality of a synthetic
image containing rendering noise. We study several approaches, assuming we have
the full reference image, a reduced reference, or no reference.
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Chapter 4 )
Full-Reference Methods and Machine I
Learning

This chapter introduces the application of machine learning to Image Quality
Assessment (IQA) in the case of computer-generated images. The classical learning
machines, like SVMs, are quickly remained and RVMs are presented to deal with
this particular IQA case (noise features learning). A recently performed psycho-
visual experiment provides psycho-visual scores on some synthetic images (learning
database), and comprehensive testing demonstrates the good consistency between
these scores and the quality measures we obtain. The proposed measure has also
been compared with close methods like RBFs, MLPs, and SVMs and gives satisfac-
tory performance.

4.1 Image Quality Metrics Using Machine Learning
Methods

Image quality measures are very important to characterize the visual quality of an
image. For example, they are of great interest for image compression (JPEG mod-
els) and natural image characterization (Lahoudou et al. 2010). The Image Quality
Assessment (IQA) can be provided by subjective and objective evaluation. Subjective
evaluation such as Mean Opinion Score (MOS) is truly definitive but is time con-
suming and expensive. Objective evaluation is defined by mathematical definitions
such as the well-known metrics Mean Squared Error (MSE), Mean Absolute Error
(MAE), Peak Signal-to-Noise Ratio (PSNR), and Structural SIMilarity (SSIM). Gen-
erally, objective evaluation metrics are based on the pixel-to-pixel difference between
two compared images and are easy to compute with low-computational complex-
ity. These metrics are used in the remaining of this chapter but they are not very
well matched to visual quality perception so other models have been provided; for
example, learning machines were adopted to compute MOS.

© The Author(s) 2018 29
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As presented in the introduction, image quality assessment models are usually
classified into three model families in the literature. Considering machine learning,
full-reference models (and reduced-reference models) are linked to the supervised
(or semi-supervised) learning process of learning machines. In supervised learning,
the machine is defined by its inputs and its corresponding desired outputs (labels).
In semi-supervised learning, a reduced database is used; this will be presented in
Chap. 5. Finally, no-reference models evaluate the quality of images without access
to reference images (i.e., unsupervised learning, where no labels are provided to
the learning task). This method has been used with some success (Delepoulle et al.
2012), and will be presented in Chap. 6.

The method for establishing IQA using machine learning can be summarized as
follows:

First step: Prepare a subjective database

Second step: Set noise features

Third step: Compute these features for the next stage of the process

Fourth step: Predict visual image quality Q with the noise features (Q = quality
= f(noise features)). Compare the predicted results to the normal MOS to set up
the learning machines (ANNs, RBFs, SVMs, RVMs)

Fifth step: Evaluate the model’s performance.

As previously presented, the main goal of global illumination methods is to pro-
duce synthetic images with photorealistic quality. They are generally based on the
Path Tracing method (Kajiya 1986), where stochastic paths are generated from the
camera point of view towards the 3D scene. Since the paths are randomly chosen,
the light contribution can change greatly from one path to another, which gener-
ates high-frequency color variations in the rendered image (Shirley et al. 1996). The
Monte Carlo theory, however, ensures that this process will converge to the correct
image when the number of samples (the paths) grows. But no information is avail-
able about the number of samples that are really required for generating a visually
satisfactory image. Consequently and due to the high-computational cost of global
illumination algorithms, perception-driven approaches were proposed. The main idea
of such approaches is to replace the human observer by a vision model. By mimick-
ing the HVS, such techniques can provide important improvements for rendering.
They can be used for driving rendering algorithms to visually satisfactory images and
to focus on visually important features (Mitchell 1987; Farrugia and Péroche 2004;
Longhurst et al. 2006). In Cui et al. (2012), a summary on the research of image
quality assessment methods is proposed when using an artificial neural network.

This chapter focuses on the use of a new perceptual index to replace psycho-
visual index in the perception-driven model. We present a full-reference image quality
metric, based on Relevance Vector Machine (RVM), to model the uncertainty brought
by noises affecting the image synthesis. In Tipping (2003), Tipping studies RVM
and introduces the principles of Bayesian inference in a machine learning context,
with a particular emphasis on the importance of marginalization for dealing with
uncertainty. RVM is applicable for regression and classification and provides sparse
Bayesian models interesting in image processing. Here, we focus on grayscale images
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and use RVM for image quality evaluation (in fact, we use the “L” component of
“Lab” color images, since noise only affects the “L” component (Carnet et al. 2008a)).
In this chapter, we first describe the experimental setup we use, then we present some
feature extraction methods and image quality metrics based on SVM and RVM.

4.2 [Experimental Setup

Unbiased Global [llumination (G.I.) methods use randomly chosen paths for sam-
pling the illumination of visible objects. This process generates stochastic noise,
which is perceptible by any human observer. Image denoising techniques, used a
posteriori, are largely present in the literature (Heinonen and Neuvo 1987; Arakawa
1996; Bigand and Colot 2010). Noise models and noise estimation from images
are, however, more difficult. Anyway, these models are based on theoretical models
of noise like additive white noise, procedural noise functions (Lagae et al. 2010),
etc. However in G.I. algorithms, noise is not additive and arises from an unknown
random distribution function. To our knowledge, there is no existing model able to
detect and to quantify stochastic visible noise in an image. We detail in the following
the different steps of our approach for solving this problem by using a new image
quality measure.

4.2.1 Overview

Our goal is to mimic the human visual detection of noise by way of a full-reference
image quality measure. So, it is necessary to provide to the proposed model some
examples of what human judgment consider to be noisy images or noiseless ones.
After validation on all these examples, the method will generate a model (function
y = Q = f(x), x is the noise feature vector and y is IQA) that will then be used on
images that have to be analyzed.

4.2.2 Data Acquisition

The model is built on data corresponding to images of globally illuminated scenes.
We used (as a first approach) a Path Tracing with next event algorithm (Shirley
et al. 1996), which computes several images from the same point of view by adding
successively N new samples' equally for each pixel. For each scene and each point
of view, we thus have several images available, the first ones being strongly noisy and
the last ones being converged. The images were computed at 512 x 512 resolution,

'In the following, we will call sample a stochastic path between the viewpoint and a light source.



32 4 Full-Reference Methods and Machine Learning
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Fig. 4.1 Two used reference scenes (Bar, Deskroom)

the number of additional samples between two successive images was N = 100 and
12 scenes were used. The largest number of samples per pixel was set at 10.000
which appeared to be sufficient for generating visually converged images. Figure 4.1
presents 2 of these scenes that were used during the validation stage of the model.
These scenes highlight different illuminations and various geometrical and textures
complexities.

4.2.3 Psycho-visual Scores Acquisition

Because we have to evaluate the noise level present in each generated image, some
experiments were necessary in order to specify the noise threshold that is used as
stopping criterion in images synthesis. But considering the entire image for noise
thresholding has two main drawbacks: on one hand, it requires evaluation methods
to work on very large datasets; this has been experimentally shown to reduce their
learning efficiency. On the other hand, the noise is generally not equally perceived by
human observers through any part of an image; noise thresholds are, thus, different
for each location in each image and the use of a global threshold would reduce the
efficiency of the approach by requiring the same number of samples to be computed
for each pixel of the image. We, thus, defined a very simple protocol in which pairs
of images are presented to the observer. One of this image is called the reference
image and has been computed with N, = 10.000 samples per pixel. The second
image, so-called the fest image, is built as a stack of images, from very noisy ones
above to converged ones below: by calling N; the number of samples in the stack’s
image i, with i = 100 at the top of the stack and i = max at its bottom, we, thus,
ensure the property Vi € [100, max[, N; < Niy100 < N,. Each of these images are
opaque and virtually cut into nonoverlapping blocks of size 128 x 128 over the entire
image. For the used 512 x 512 test images we thus get 16 different blocks (clockwise
sorted from O to 15, top image of Fig.4.8) for each of the stack’s images. During
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the experiments, the observer is asked to modify the quality of the noisy image by
pointing the areas where differences are perceived between the current image and
its reference one. Each point-and-click operation then causes the selection and the
display of the corresponding i + 100 level block thus visually reducing noise in
this image’s subpart. This operation is done until the observer considers that the
two images are visually identical. Note that for reducing experiment artifacts this
operation is reversible meaning that an observer is able to go down or up into the
images stack. The pair of images that is presented to the observer is chosen randomly
but we ensure that each pair will be presented two times. Obviously, the block grid
is not visible and all the observers worked in the same conditions (same display with
identical luminance tuning, same illumination conditions, etc.). The results were
recorded for 33 different observers and we computed the average number of samples
N that are required for each subimage to be perceived as identical to the reference one
by 95% of the observers. We got experimentally N € [1441, 6631] with often large
differences between sub-images of the same image (see Fig. 4.2 for some images we
used). So, now we present attempts of automatic image quality index we propose.

Sub-images for Bar Experiments Sub-images for Class : Expumﬂ :

4579 | 6631 5818 5906 1866 1694 1784 1978

27| 1R | 161 | 2009 3302 | 3465 | 4699 | 2827
2400 | 2324 | 2098 | 2735 2134 1442 1493 1683

| 1989 1934 1816 | 1975

2955 | 2344 | 2002 | 2190

Experiments Sub-images for DeskRoom] Experiments

2031 2022 2308 | 2582 2438 2356 | 2653 | 2607

1733 2497 2683 2180 1925 2045 | 2255 | 2369

1653 2660 | 3413 2367 377 2549 | 2382 | 2439

2675 | 2605 | 2121 1964 2569 | 3236 | 2398 | 2602

Experiments Sub-images for DeskRoom2 Experiments

2671 2006 3068 3467 3560 | 3655 3728 | 4034

3554 | 2102 | 2239 | 3104 2744 | 3106 | 324 | M0

3537 | 2734 | 2829 | 2720 2 2965 | 2673 | 417 | 2902

4058 | 3535 | 2324 | 2462 2788 | 2637 | 2842 | 2707

Fig. 4.2 The thresholds obtained for some used scenes
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4.3 Noise Features Extraction

4.3.1 Classical Strategies

Feature generation is the iterative process of finding a subset of only pertinent fea-
tures by removing redundant or interfering ones. It makes it possible to go from a
high dimension of images (number of pixels) to a lower dimension (feature vector).
Training algorithm after feature generation will be easier and better performances in
time and space complexities would be achieved. In this section, we discuss method-
ologies to extract image noise quality indexes in order to detect stochastic noise in
photo-realistic images.

In order to get the best characterization of noise as possible, we convert each image
into the frequencies domain using a noise mask. The noise mask is a denoising
technique commonly used in satellite imagery in order to allows pictures to have
enhanced details and to reduce the image noise (Kumar 2014). Since noise only
affects L component of Lab color images (Carnet et al. 2008b), first a blurred image
is computed by applying to L linear filtering with averaging filters of sizes 3 x 3
and 5 x 5 (Makandar and Halalli 2015), linear filtering with Gaussian filters of same
sizes and with standard deviations o € {0.5, 1, 1.5}, median filters (Dawood et al.
2012) and adaptive Wiener filters (Biswas et al. 2015) of same sizes. The obtained
image is also denoised via wavelet analysis since the wavelet coefficients do not
follow a Gaussian distribution (Gao et al. 2015; Chang et al. 2000; Gou et al. 2009;
Fernandez-Maloigne et al. 2012). Next, the obtained image is denoised via Wavelet
analysis. After one stage 2D wavelet decomposition, an input image is decomposed
into four sub-bands namely low—low (LL), low—High (LH), high—low (HL), and
high-high (HH) sub-bands (Fig.4.3).

Among these four sub-bands, the LL sub-band contains low-frequency compo-
nents, while the others three are the high-frequency components. The final image is
reconstructed by extracting noise from these components using MATLAB Wavelet
Toolbox. We obtain then 13 denoised versions for the image (Constantin et al. 2015),
namely L p in the following. The mean value and the standard deviation are applied
to the different denoised versions of the image in order to obtain a total of 26 noise
features used as inputs to the learning model. Given an image L, the estimated image

Fig. 4.3 One stage of the columns -
2D-wavelet transform i1
columns

LD e,

horizontal
columns
HL #1
vertical

HHJ.“',1

diagonal
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noise at the pixel location (i, j) is obtained by a pixel wise subtraction between the
current image pixel and the denoised one Lp:

e(@, j) =L@, j) = LpG, j)I. 4.1)

After some experiments, we find that the mean and the standard deviation give the
most significant results from the set of noise quality indexes defined in (Lahoudou
etal. 2010, 2011):

1 w
(1) _ . .
O = 2 ;eo, ) (4.2)
1 vV W 172
AW =\ oy o 2l n=rowy?) (4.3)

i=1 j=1

where V x W is the dimension of the image matrix L. We then obtain a total of 26
features used as inputs to the learning model. The implementation of the learning
dataset in case of feature generation is given by Algorithm 2.

Algorithm 2 Learning data-set algorithm for noise feature generation

1: Requirement: a set S of scenes where each scene is divided in 16 sub-images.
2: Read a sub-image 1;; from the set S of scenes wherei =1,2,..., P, j =1,2,...0; P denotes
the number of training scenes and Q denotes the number of sub-images in a scene (In our case
P =101 and Q = 16).
3: Convert the RGB color sub-image to Lab color sub-image and extract the luminance vector L
which has a size of 128 x 128 pixels for each sub-image.
: Extract the 26 noise feature vector from the luminance component L.
: Repeat steps 2-4 for all the training sub-images.
: Save the feature vectors with the desired values calculated based on HVS thresholds on the
learning data-set.

QN L N

4.3.2 Pooling Strategies and Deep Learning Process

In the previous section, we tried to identify the best subset of features to represent
noise features in synthetic images. However, these noise features depend on change
with different kind of images (specular images, diffuse,etc.) and features extraction
techniques. Another way to automatically obtain noise features from images consists
of using the deep learning paradigm. In the present section, we propose the use of
deep learning (DL) for reverse engineering of noise features that are learned directly
from the raw representation of input synthetic images using Convolutional Neural
Networks (CNN). It has been used in Lee et al. (2017) to learn leaf features for plant
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classification. In the same way, the use of deep learning has been investigated for
blind image quality assessment (Bianco et al. 2016).

The CNN model for selecting features of noisy images is based on the model
proposed in Krizhevsky et al. (2012). Rather than training a new CNN architecture,
we reused the pretrained network, because it is now widely admitted that features
extracted from the activation of a CNN trained in a fully supervised manner in large-
scale object recognition studies can be repurposed for a novel generic task (Donahue
et al. 2014).

Different standard databases are available to test the algorithm’s performance with
respect to the human subjective judgments. However, image captured using camera
devices are usually afflicted by stochastic mixtures of multiples distortions which are
not well modeled by synthetic distortions found in existing databases (Liu et al. 2014;
Virtanen et al. 2015). In case of scenes with 512 x 512 resolution as in the previous
section, the scenes Bar, Class, and Cube consist of diffuse surfaces with complex
geometry (Fig.4.2). In the Deskroom1, DeskRoom?2, and Sponza scenes, objects
with different shapes and material properties are placed together presenting rich
and complicated shading variations under different lighting and viewing conditions.
We also used more complex scenes with 800 x 800 resolution (see Figs.4.4 and
4.5) to improve the learning diversity. The corresponding parameters are presented
Table4.2.

The scene Chess (Fig.4.4a) includes rich inter-reflection effects between the dif-
fuse and specular surfaces, such as color bleeding and caustics. The new scene
Kitchen (Fig.4.4b) is used to illustrate view-dependent indirect illumination effects
caused by strong inter-reflections between specular surfaces. We have also tested the
scalability of our method on the four complex scenes Pnd (Fig.4.4c), BathRoom1,
BathRoom?2, and DeskRoom (Fig.4.5a, b and c) which contain different geometrical
and textural characteristics. The images are cut into 16 nonoverlapping blocks of
sub-images of size 128 x 128 pixels for the scenes with 512 x 512 resolution. We
set the maximum number of rays per pixel to 10100 in order to obtain non-distorted
copies of the images. The images were generated by adding 100 rays for each pixel
between two successive images using path tracing algorithm (Hedman et al. 2016).

Fig. 4.4 Three used scenes with 800 x 800 resolution
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(a)

Fig. 4.5 Three other used scenes with 800 x 800 resolution

The labeling process selects images computed using diffuse and specular render-
ing and ask the observers for their qualities. The observers which are from different
locations have faced the same display conditions (Constantin et al. 2015). The learn-
ing and the testing sets contain images with different percentages of homogeneous
regions, edges, and exhibit different light effects. In order to separate the noise from
signal, a sub-image is computed by applying to the luminance component different
pooling strategies. The feature pooling is performed element by element on each
version of the sub-image in a deep learning process using 13 layers. We use Averag-
ing (A1-A2), Gaussian (G1-G6) (Makandar and Halalli 2015), Median (M1-M2)
(Dawood et al. 2012), and Wiener (W1-W2) (Biswas et al. 2015) convolutions of
depth and spread equal one. Next, the image is denoised using wavelet decomposition
(Wav) (Gao et al. 2015) (see Table4.1). The model is trained using Caffe framework
(Jiaet al. 2014). Next, the feature concatenation pooling is performed by concatenat-
ing the features vectors in a single longer feature vector in order to obtain a total of
26 noise features vector used as input to the perception model. Finally, the prediction
pooling is performed for each sub-image of the scene (Table4.2).

Table 4.1 Feature pooling architecture
Layers L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 |L11 |L12 |L13

Type Al A2 |Gl G2 |G3 G4 |G5 G6 |Ml |M2 |WI |W2 |Wav
Size 3x3/5%x5(3%x3|5x5/3%x3|/5%x5[3x3|5x5|/3%x3|5x5|3x3/5x5
Standard 0.5 0.5 1 1 1.5 1.5

deviation

Padding 1 2 1 2 1 2 1 2 1 2 1 2
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Table 4.2 Number of rays per pixel between two successive images and largest number of rays
per pixel for the scenes with 800 x 800 resolution

Scenes with 800 x 800 Number of rays between two | Largest number two successive
resolution successive images images

Kitchen 5 700

Chess 50 5000

BathRoom1 10 950

Pnd 50 5000

BathRoom?2 10 950

DeskRoom 50 5000

4.4 Image Quality Metrics Based on Supervised Learning
Machine

4.4.1 Support Vector Machines

In a previous work, we first applied Support Vector Machines (SVMs) to the percep-
tion of noise toward an automatic stopping criterion (Takouachet et al. 2007). Let
us recall some basic and well-known properties of SVMs. SVM makes predictions
based on the function y(x) defined over the input space, and “learning” is the process
of inferring this function (often linked to some parameters of the function, w is the
normal vector to the hyperplane, Fig.4.6). SVM is a non-probabilistic binary linear
classifier, used to solve discrimination (or regression) problem, that is, to say decide
if a new example belongs to one class or not. Learning process makes it possible
the construction of the function y = f(x) using a hyperplane and a (hard or soft)
margin to separate learning samples into 2 classes, Class1 and Class2 (41 or —1,
Fig.4.6). Consider the problem of separating the set of training vectors belonging to
two separate classes:

D={x,y),..., xn,yn)}, x € R, y e {—1,+1}, 4.4)

where N is the number of images in the learning set. The objective of SVM is to
find the optimal hyperplane that can separate the two classes and meanwhile can
maximize the margin which is defined as the distance between the nearest point and
the hyperplane. It can be formulated as follows:

y(x;w) = f(x) =wlx +b, 4.5)

where w and b denote the weight vector and the bias respectively.
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data of another class WTX + b =-1

Fig. 4.6 Optimal hyperplane in the two class problem

In addition to performing linear classification, SVMs can efficiently perform a
nonlinear classification using what is called the kernel trick, implicitly mapping
their inputs into high-dimensional feature spaces. Popular set of candidates for y(x)
is that of the form:

M N
Yosw) =) w0 =Y [wi. K (x, x) + b, (4.6)
i=1

i=1

where ¢ (x) are basic functions, w; are weights (adjustable parameters). SVMs are
built with basis functions K (x, x;), named kernel functions. The key feature of the
SVM is that, in classification case, its target function attempts to minimize a measure
of error on the training set while maximizing the “margin” between the two classes
(in the feature space defined by the kernel). This is detailed in the following to
introduce the particular case of RVMs. Learning methods like RBF (Radial Basis
Function) neural network or multi-layer neural networks (MLP) are particular cases
of SVM (they are built with different kernels). So, they will also be considered for
comparisons in the following. These techniques were presented in the book (Xu et al.
2015) so they are not remained in this chapter.

Learning methods concern algorithms which are able to automatically improve
their results over time. Our goal is to study and develop an artificial intelligent
model, which should produce the same answer as a set of observers to the noise
problem. That means that we want this model to be able to classify images as noisy
or not. In this work, we study the use of SVMs to fit our classification problem.
The main drawback of these approaches is that the data used during the learning
stage have to be carefully chosen for the model to learn what is expected. Also,
they require a huge number of nonredundant labeled images in order to train and
to evaluate the perception models. For this reason, we use SVM inductive learning



40 4 Full-Reference Methods and Machine Learning

to find the most informative noisy image for the learning algorithm and to reduce
manual labeling workload. SVMs (Ren 2012) are part of a set of supervised learning
methods for regression and classification problems. SVMs compute the hyperplane
that can correctly separate the data and meanwhile can maximize the margin which
is defined as the distance between the nearest point and the hyperplane. The training
data that lie closest to the hyperplane are called support vectors. Generally, SVMs
allow us to project the original training data to a higher dimensional feature space
via Mercer Kernel operator K. We consider the set of classifiers of the form:

f(x) =wlo(x) +b, 4.7)

where w and b denote weight vector and bias respectively. ¢ (x) is a nonlinear map-
ping function that maps the training data into higher dimensional space, thus making
them linearly separable. When f(x) > 0, we classify the image x as not affected
by noise otherwise we classify the image x as noisy. The SVM finds an optimal
hyperplane that can correctly separate the two classes of images and meanwhile can
maximize the margin which is defined as the distance between the nearest point and
the hyperplane. Then, SVM can be specifically stated as follows (Abe 2010):

N
1
min,, g, EWTW +C Z & (4.8)

i=l

subject to
yiw ¢() >1-¢&,6>0i=1,...N (4.9)

where §; is a positive variable giving a soft classification boundary. C is a positive
regularization constant controlling the degree of penalization of the variable ;. To
solve the above optimization problem, we can adopt a Lagrange function in order to
obtain the following dual optimization problem:

N
maximize o —
1

Y i yiyp ()¢ (x)) (4.10)

N
=1 ]:]

1
24

l

i=

subject to
N

Y aiyi=0and0 <o; < C,Vi @.11)

i=1

where «; is the Lagrange multiplier. During the training process, most of the ¢; are
zero and only the training data that lie on the margin surface or inside the margin
area have nonzero «; are called support vectors. To calculate ¢ (x;).¢(x;), we can
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use kernel function K (x;, x;) = ¢ (x;).¢ (x;) that verify Mercer’s condition. For any
test image x;, its class label is determined through the following:

M
y(x) = sgn Zaﬂ((x,x,)—l—b , 4.12)
j=1

where M is the number of support vectors. However, SVMs are limited to small
sizes of images, due to the great number of kernels (neurons) required (the number of
support vectors required grows linearly with the size of the training size). Predictions
made by SVMs are not probabilistic: this is crucial for classification applications
where posterior probabilities of class membership are necessary to adapt to varying
class priors and asymmetric misclassification costs (SVMs usually learn texture but
not noise!). It is necessary to estimate the error/margin trade-off parameter C and the
kernel function K (x, x;) must satisfy Mercer’s condition. Tipping (Tipping 2004)
have shown that RVM are interesting in sparse Bayesian learning. Particularly, the
number of kernels of RVMs drastically decreases compared to SVMs. The obtained
sparsity is interesting to investigate the proposed image quality model.

4.4.2 Relevance Vector Machines

4.4.2.1 Definition

The major motivation of RVM implementation is to remove the above limitations of
SVMs. We now recall some results about RVM.
Given a dataset of input—target pairs {x,, #,}_,, the targets are samples from the

model with additive noise:
th = y(Xn; W) + &g, (4.13)

where &, are independent samples from some noise process assumed to be mean-
zero Gaussian with variance o2, Due to the assumption of independence of the 1,
the likelihood of the complete dataset can be written as

2
p(T | W, 0% = (27102)71\//2 exp |:—% <w) i| , (4.14)

(e

where T = (tls b, ""tN)Ts W= (W01 Wi, eenny WN)T’ P = [¢(xl)v ¢(-x2)9 ¢(-XN)]
and ¢ (xy) = [1, K (xn, x1), K (X, %2), ey K (0, x)1"
A classical zero-mean Gaussian prior distribution over W is defined as follows:

M
pW @) =[[Nowi 10,0, (4.15)

i=0
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where N is a Gaussian distribution over w;, and where « is the vector of hyperpa-
rameters. This prior distribution is favourable to weak weight models.

4.4.2.2 Sparse Bayesian Learning

Having defined the prior, Bayesian inference proceeds by computing the posterior
over all unknowns given the data (from Bayes’rule, Tipping 2003):

p(T | W, a, 0%
_p(TIW, o)p(W | )
p(T | a,0?) , (4.16)

1 -1
= @u) MR YT exp [‘E(W —w' Yy (W m}

where the posterior covariance and mean are respectively:

d = oTo+4)"!
p=0723 o'T ’ @17

where A = diag(og, @1, ..., N).

4.4.2.3 RVM Construction

The aim of the RVM consists in maximization of the marginal probability, that
makes it possible the elimination of useless parameters. This property is illustrated
in Fig.4.7, using images of size 512 x 512, each image is divided in 16 blocks.
During learning phase, the input of the network consists in the difference between the
processed image and a noisy image (first image created during the synthesis process,
with 100 samples). This procedure makes it possible the detection of noise in images,
and do not use reference image (which is obviously unavailable). Processed images
(60 different images were used) are examples obtained with different noise levels
(different number of sample N;) and un-noisy images. The output of the network is
“—1” if the image is considered “noisy” or “—1” if image is considered non-affected
with noise (human judgment). The network parameters are optimized using classical
cross-validation.
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REF1

(a) Complete structure of the proposed RVM
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(b) Kernel width optimization for minimum relevant vectors

Fig. 4.7 RVM design
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4.4.2.4 The Design of the RVM Image Quality Evaluation

We propose to use the previous defined RVM to extract a new noise-level index. The
noise-level measure scheme is divided into two steps. In the first one, we perform
images learning procedure applied to a block of the processed image I (obtained with
Ni samples). Then, in a second step, we use this network to test the resulting RVM.

4.4.2.5 Algorithm

The implementation of image quality evaluation based on RVM is given by the
following algorithm:

Algorithm 3 RVM Image quality measure

Require: a M x N gray-level image I, divided in 16 blocks and presented to neural network of
Figure 4.6

1: Initialize the values ; and o2

2: if Optimisation condition unsatisfied then

3:  Find values of w and )

4:  Process values of y and estimate new values of « and o2

5: else

6

7

8

9

Suppress weights associated to values u = 0

: end if

: Keep the vectors of the RVM associated wih values v # 0
: Display result (image is noisy or not)

4.4.2.6 Experimental Results with a Synthetic Image

In order to test the performance of the proposed technique, some results obtained with
the synthetic image named “Bar”, Fig.4.8, are shown in this section (other images
were tested and same behaviors were observed, so they are not presented here due to
the lack of space). This image is composed of homogeneous and noisy blocks and
is interesting to present some results. We also present the results obtained with RBF,
MLP, and SVM (“C” parameter optimized to 512) networks with the same image.
The first figure represents the “Bar” image, the second one represents the learning
average quadratic error, the third one the test average quadratic error, and the fourth
one the number of relevant vectors, support vectors, or hidden neurons for the four
implemented methods. These curves exhibit the advantage of using RVM for this
task, where RVM performances outperform the other equivalent networks. These
results have been generalized to a great variety of computer-generated images (see
our website).
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Fig. 4.8 Original image and compared results of different neural networks

4.5 Conclusion

The central idea of this chapter was to introduce the application of machine learning
(and particularly RVMs), to take into account the uncertainty (noise) present at the
image synthesis stage, and this idea seems to be very promising. Quality of synthetic
images in testing stage is assessed with low error (less than 1%). RVM technique uses
dramatically fewer basis functions than a comparable SVM while offering a number
of additional advantages. These ones include the benefits of probabilistic predictions
(noise detection), automatic estimation of “nuisance” parameters and the use of
arbitrary basis functions (non-“Mercer” kernels) and a good generalization despite
the small size of the learning database. The biggest advantage for this application is a
sparse Bayesian learning that makes it possible to treat complete images with fewer
relevant vectors than support vectors of SVMs. Noise features considered as inputs of
neural networks (RVMs or others) are another key issue of the proposed method. We
have compared conventional extracted features and deep learning extracted features:
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the both give about the same (good) results. CNN models are highly dependent on
the size and level of diversity of the training set. We think that the training data at
our disposal are not sufficient at the moment, but CNN models have to be kept under
the hand for the future. Thus we have shown that quality of computer-generated
images can be predicted using machine learning associated to noise features. At the
moment, we have tested reduced-reference models to better exploit the diversity of
the training data at our disposal (next chapter) and a no-reference model (last chapter)
for small training datasets. So, that the user can choose the most effective method
for the considering problem he has to deal with.
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Chapter 5 ®)
Reduced-Reference Methods g

Reduced-reference image quality assessment needs no prior knowledge of refer-
ence image but only a minimal knowledge about processed images. A new reduced-
reference image quality measure, based on SVMs and RVMs, using a supervised
learning framework and synthetic images is proposed in this chapter. This new met-
ric is compared with experimental psycho-visual data with success and shows that
inductive learning is a good solution to deal with small sizes of the databases of
computer-generated images. As reduced-reference techniques need only small size
of labeled samples, thus the rapidity of the learning process is increased.

5.1 Introduction

We now introduce some new learning algorithms that can be applied with success
to the considered application. In many practical global illumination applications, the
reference image is not available at the beginning of the algorithm, and a blind quality
assessment approach is desirable. However, the no-reference models have a crucial
drawback because they are based on theoretical models of noise (Zhang et al. 2011;
Delepoulle et al. 2012). In the third type of method, the reference image is only
partially available, in the form of a set of extracted features made available as side
information to help evaluate the quality of the distorted image. This is referred to as
reduced-reference quality assessment (Lahoudou et al. 2010a; Renaud et al. 2011).
However, the proposed models provide incomplete results due to the complexity of
the internal human vision system. They are very efficient for learning perceptual
features, but, and at the same time, they are less efficient for learning noise. More-
over, they require a huge number of labeled images in order to train and evaluate
the perception models. In (Constantin et al. 2015a), the authors realized a Fast Rel-
evance Vector Machine (FRVM) architecture for the noise perception model that
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uses fewer basis functions than a comparable SVM does and as well offering good
prediction on the testing images. However, they used only one single scene to train
and evaluate the FRVM model without considering an inductive learning algorithm
for choosing the most informative images. It is quite clear that using only one learn-
ing scene is not enough to train the model in order to obtain a good generalization
on different computer-generated images. In case of Spike Neural Network (SNN),
the authors realized a simple architecture for the noise model, whereas the learning
algorithm is still inefficient to learn a huge number of different images in order to
make good perception (Constantin et al. 2015b). Furthermore, the neural dynamic
should be evaluated for a certain period of time which makes the computation time
for questioning the model very slow. These drawbacks lead to study a more possible
biological adapted method based on inductive learning. The inductive learning, in
its most general sense, refers to machine learning where the learning algorithm has
some degree of control over the images on which it is trained (Guo and Wang 2015;
Paiseley et al. 2010). Dornaika et al. developed a semi-supervised feature extraction
algorithm for pattern categorization (Dornaika et al. 2016). However, this algorithm,
which seeks a linear subspace close to a nonlinear one for feature extraction, was
tested only for the classification of a benchmark databases data without considering
real-life applications. Ruz improves the performance of the inductive rules family
classifiers by presenting a new technique for the presentation order of the training
samples which combines a clustering method with a density measure function (Ruz
2016). The main drawback with this approach is that the convergence to a good result
could be quite time consuming especially when the training set contains thousands
of samples. So, it cannot be applied in case of global illumination, because the induc-
tive learning algorithm should select pertinent samples from a set containing a huge
number of unlabeled sub-images. In order to reduce manual labeling workload, we
try here to consider active and semi-supervised learning algorithms for image noise
detection in global illumination. The active learning algorithm aims at finding the
most informative image in each iteration for human labeling, while semi-supervised
learning aims at labeling images by the machine itself. It has been shown that active
and semi-supervised learning may sometimes overcome the limitations of supervised
learning in the fields of classifications (Guo and Wang 2015), characters recognition
(Richarz et al. 2014), and computational chemistry (Liu 2014). However, their perfor-
mance was not investigated in the domain of noise perception for global illumination
algorithms.

The main contribution of this work lies in the approach of designing a new induc-
tive learning model based on feature selection in order to detect and to quantify
stochastic noise present in global illumination. This algorithm uses SVM semi-
supervised learning to select class central images (Guangwu and Minggang 2014)
and at the same time selecting during active learning the images close to the classifi-
cation hyperplane (Guo and Wang 2015). The performance of this algorithm is tested
by comparing it with the SVM model on global illumination scenes computed with
diffuse and specular rendering (Constantin et al. 2015b). We also make a compara-
tive study between this algorithm and our previous work based on FRVM for image
noise detection in global illumination (Constantin et al. 2015a). We demonstrate
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that the inductive learning algorithm is powerful to generalize and can effectively
perform a good perception for predicting the quality of computer-generated images.
The chapter is structured as follows: Sect. 5.2 describes the experimental database we
use and Sect. 5.3 explains the inductive inference strategies for global illuminations
whereas Sect.5.4 shows the experimental results. Finally, the work is summarized
with some conclusions in Sect.5.5.

5.2 Fast Relevance Vector Machine

The RVM has a probabilistic Bayesian learning framework and has good general-
ization capability (see Chap.4). We now present how to build a fast version of RVM
(FRVM). RVM acquires relevance vectors and weights by maximizing a marginal
likelihood function. The structure of the RVM is described by the sum of product
of weights and kernel functions. A kernel function means a set of basis function
projecting the input data into a high- dimensional feature space.

As previously presented, given a dataset of input—target pairs {x,, ,} ,]L\’:l , We write
the targets as a vector t = (¢, ...., ty)” and express it as the sum of an approximation
vectory = (¥(x1), ..., y(xy))T and an error vector & = (g1, ..., ey)” (Tipping 2003):

t=y+e=¢w+e (5.1

where w = [wy, wy, ..., wys] is the parameters vector, ¢ = [¢1, ..., ¢y ]isthe N x M
matrix whose columns comprise the complete set of M basis vectors.

The sparse Bayesian framework makes the conventional assumption that the errors
are modeled probabilistically as independent zero-mean Gaussian with variance o',
Due to the assumption of independence of the targets ¢, the likelihood of the complete
dataset can be written as

2 —N/2 _—N ||t_y||2
ptiw,0”) = 2m) o Vexp| ———— 5.2)
202
Maximizing likelihood estimation of w and o2 from (5.2) leads to overfitting. To
avoid this, the likelihood function is complemented by a prior over the parameters,
which take the following form:

M 2
— (27)M2 1/2 _ %W ) 53
pwla) = (2n) ﬂ(xm exp 5 (5.3)
where o = (a4, ..., )T is a vector of M independent hyperparameters, each one

individually controlling the strength of the prior over its associated weight.
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Having defined the prior, Bayesian inference proceeds by computing the posterior
parameter distribution from Bayes rule as follows:

pwlit, . 0%) = <2n>-<N+‘>/2|2|—'/2exp(—%(w —w'ET w =), (54
where the posterior covariance and mean are, respectively, the following:

u=oc’x¢’t (5.5)

Y= ¢Tp+ )" (5.6)

and A =diag(ay, ..., dp).

The distinguishing element of Bayesian methods is marginalization, where we
attempt to integrate out all nuisance variables. The sparse Bayesian learning is formu-
lated as the maximization with respect to « of the marginal likelihood or equivalently
its logarithm:

1
) = log(p(tla, 02)) = —E[Nloan +log|C|+tTC7 '] (5.7)

with
C=0l+¢pA ¢ (5.8)

Values of « and o2 that maximize the marginal likelihood cannot be obtained in
closed form, and an iterative reestimation method is required. The following approach
of (Kim et al. 2006) gives

@ =2 (5.9)
Hi

2
R (5.10)
N — Xy,
where p; is the ith posterior mean weight (5.5) and the quantities y; = 1 — o; X);
with the ith diagonal element X;; of the posterior weight covariance (5.6).

Since many of the hyperparameters tend to infinity during the iterative reestima-
tion, the posterior parameter distribution (5.4) of the corresponding weight becomes
highly peak at zero (Tipping 2004). In this optimization process, the vector from the
training set that associates with the remaining nonzero weights is called the relevance
vector (RV).

The RVM algorithm begins with all the M basis functions included in the model
and updated the hyperparameters iteratively. As a consequence of these updates, some
basis functions would be pruned and the algorithm would be accelerated but never-
theless the first few iterations would still require O (M?) computations. The FRVM
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algorithm begins with an empty model and adds basis functions to increase the
marginal likelihood. For this purpose, the term C can be decomposed as (Tipping
2003)
C=C.i+a'¢ig] (5.11)

where C_; is C with the contribution of ith basis vector removed.

We can write the logarithm £ (o) as

q?
a; + i

) = £(a—) + %[IOgOli —log(a + i) + I=tlei) +nle), (.12)

where £(c_;) is the marginal likelihood with ¢; excluded.
The sparsity and the quality factors are defined as

si =7 CZl g (5.13)
g = ¢f Clt. (5.14)

Analysis of n(;) (Faul and Tipping 2002) shows that £(«) has a unique maximum

with respect to o;:
ifg? >
= | a1 T (5.15)

co ifgl <s

It is relatively straightforward to compute ¢; and s; for all the basis functions
including those not currently utilized by the model. However, it is easier to update
these values based on Woodbury identity as follows:

Sn = G BOn — 6, B Zd" By (5.16)
On =9 Bf — ¢ Bop X" Bi, (5.17)

where B = 0721,f = ¢yp + B~'(t — y) and ¢y p = X" Bf is the point estimate
for the parameters which is obtained by evaluating (5.5).
It follows that in the FRVM algorithm, the sparsity and the quality factors are

updated as
S

= —mom 5.18

g Ay — Sm ( )

G = —mZm On (5.19)
oy — Sy

Itis shown that the FRVM algorithm reduces the probability of overfitting and uses
a small number of kernel functions (Tipping 2003). However, two main drawbacks of
these approaches can be highlighted. On one hand, the data that should be used during
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the learning stage has to be carefully chosen, in order for the model to learn what is
expected. On the other hand, these kinds of approaches provide us with a black-box
model. They give good answers but it is often difficult to know how they learned and
exactly what they learned. Next, we briefly remain how to generate the noise feature
input vector in order to build the FRVM model for image quality evaluation.

5.3 Image Quality Evaluation (IQE)

5.3.1 IQE Using FRVM

As detailed in the previous chapter for noise feature generation, we first apply image
denoising algorithms to an image in order to obtain estimates of the image noise.
Given an image L, denoising operation is applied to obtain its denoised version
Lp (the dimension of Lp is 13). The estimated image noise at the pixel location
(i, j) is obtained by a pixel-wise subtraction between the current image pixel and
the denoised one:

e(i, j) = |L(G, j) — Lp(, j)I. (5.20)

After some experiments, we find that the mean and the standard deviation give the
most significant results from the set of noise quality indexes defined in (Lahoudou
et al. 2010b, 2011):

1 Vv W o
FOW) = 5 Do) et ) (5.21)

i=1 j=1

FAL) = (

w
Y (el )= £ @', (5.22)

1 j=1

M<

VxW

i

where V x W is the dimension of the image matrix L. For each of these 13 compo-
nents, we extract the noise quality indexes and, therefore, we arrive at a total of 26
features used as input to the SVM learning model.

The experimental dataset is then used for training the FRVM model. In the training
protocol, we provided the difference of two sub-images to the model: a sub-image
called reference and one of the test sub-images. Ideally, the reference sub-image
should be the converged one. But during the use of the model in an iterative global
illumination algorithm, the converged image is obviously not available. Thus, the
reference image used for learning and noise detection is a quickly ray-traced image
of scenes which highlight the same features of the converged one (shadows, textures,
reflections, etc.). The implementation of images quality evaluation based on FRVM
is given by the marginal likelihood maximization Algorithm 4 (Tipping 2003).

In this approach, the size of globally illuminated scenes is very large and thus
training of the learning models is computationally costly. To cope with the problem,
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Algorithm 4 FRVM Image quality algorithm

1: Requirement: a set S of 512 x 512 gray-level scenes, each scene is divided in 16 sub-images.

2: Apply the different denoising algorithms to the sub-images and save the noise feature vectors
with the corresponding desired targets on the learning set.

3: Initialize 6% to some sensible value and the model with a single basis vector ¢;, setting from
(5.15):

o = lgill? /gl 2112/ 11gill* — o%)
All other a, are naturally set to infinity.
4: Compute X and p which are scalars initially along with initial values of s,, and g, for all M
bases ¢p,.
: Select a candidate basis vector ¢; from the set of all M.
6: Compute 6; = qi2 — Si.
if 6; > 0 and o < o0 then re-estimate ;.
if 6; > 0 and o; = oo then add ¢; to the model with updated ;.
if6; <0anda; < oo then delete ¢; from the model and set o; = 0.
7: Update c® = ||t — y||*/(N — M + ZAK4=1 o Xxx) in order to maximize the marginal likelihood
defined in (5.7).
8: Re-compute X, p using Eq.(5.5), (5.6) and all s, q,, using Eqs. (5.16)—(5.19) and if converged
terminate, otherwise repeat from 5.

)

we can conduct feature generation before training, because the complexities of most
learning algorithms are proportional to the number of features.

5.3.2 IQE Using Inductive Learning

Learning methods concern algorithms which are able to automatically improve their
results over time. Our goal is to study and develop an artificial intelligent model,
which should produce the same answer as a set of observers to the noise problem.
That means that we want this model to be able to classify images as noisy or not.
First, we studied the use of Support Vector Machines (SVMs) to fit the classification
problem. The main drawback of these approaches is that the data used during the
learning stage have to be carefully chosen for the model to learn what is expected.
Also, they require a huge number of nonredundant labeled images in order to train and
to evaluate the perception models. For this reason, we use SVM inductive learning
(semi-supervised and active learning) to find the most informative noisy image for
the learning algorithm and to reduce manual labeling workload. Considering SVMs
(Sect.4.3), for any test image x;, its class label is determined through the following:

M
y(x) =sgn(Y_ K (x, x;) + b), (5.23)
j=1

where M is the number of support vectors.
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When employing active learning to work with SVMs, the idea is to take the image
that has the lowest confidence as the most informative one. It goes without saying that
selecting unlabeled images far from the hyperplane is not helpful since their class
membership is known. The most useful images for refining the hyperplane are the
unlabeled images near the hyperplane. In order to avoid extra manual labeling images,
we utilize a semi-supervised learning algorithm for the remaining large amount of the
unlabeled images that are not chosen during the active learning algorithm (Guangwu
and Minggang 2014). The proposed algorithm itself selects many class central images
to better describe the class distribution and to help SVM-active learning to be more
precise in finding the boundary images. In order not to introduce too many labeling
errors, the label changing rate is used to ensure the reliability of the predicted labels.
In case of global illuminations, whenever the SVM-active learning iterates many
times, the unlabeled images should be classified into two classes: the noisy images
class (denoted as N) and the reference images class (denoted as R) as follows:

R ={xilx; e U, f(x;) > 0} (5.24)
N = {xi|x,- S U, f(x,-) < 0} s (525)

where U is the set of unlabeled sub-images. For each class, the proposed semi-
supervised learning algorithm computes the label changing rates for the unlabeled
sub-images and selects the sub-images class central of which the label changing rate
is equal to O as follows:

Ur ={xilxi e R,y (x;) =0} (5.26)
Uy = {xilx; € N, y(x;) = 0}, (5.27)

where y (x;) refers to the label changing rates of the sub-images x;. Then, by using
Ug and Uy, the two sub-images which are chosen by the learning algorithm from the
noisy and the reference classes have the median distance to the current classification
hyperplane as follows:

xg = mediany, (d(x;)|x; € Ug) (5.28)
xy = mediany, (d(x;)|x; € Uy), (5.29)

where d(x;) is the distance of the image x; to the current classification hyperplane.
Furthermore, by using label changing rate to ensure labeling reliability, datasets Ug
and Uy would have a higher confidence on unlabeled sub-images predicted labels.
If the label changing rate of a sub-image is equal to zero, it means that this sub-
image’s predicted label does not change with the adjustment of the hyperplane.
Which also means that the sub-image has already been correctly classified in the
previous iterations and its predicted label would be very credible. The inductive
inference learning for global illuminations is given by Algorithm 5.
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Algorithm 5 Inductive Inference Learning for Global Illumination Method

Require: a set S of grayscale scenes, each scene is divided into 16 sub-images; M: the iteration
times of active learning; N: the iteration times of semi-supervised learning.

1: Apply the different denoising algorithms to the sub-images and save the noise feature vectors
with the corresponding desired targets on the learning set.

2: Split the noise feature vectors into two sets: A small set LA of labeled noise feature vectors with

the corresponding desired targets and a large set UL of unlabeled noise feature vectors.

S <« 0.

s f < SVMr74in(LA).

> while S < N do

Apply SVM active learning M times by selecting the unlabeled sub-images near to the hyper-

plane.

Apply Semi-Supervised learning for the remaining sub-images and select class centers using

equations (5.28) and (5.29).

8:  Add by the learning algorithm the predicted targets for class center sub-images.

9:  Put the class center sub-images into the set LA and remove them from the set UL.

10: f <~ SVMRetrain(LA)~

11: S« S+1.

12: end while

13: Apply SVM active learning until convergence.

QYR W

N

5.4 Experimental Results and Discussion

5.4.1 Design of the Inductive Model Noise Features Vector

As previously presented (5.2.1), we converted each image into the frequency domain
using a noise mask. The noise mask is obtained by computing the difference between
quick ray-traced sub-image of scenes and the blurred one. To cope with the problem
of training the learning models on very large size of globally illuminated scenes,
we estimated the image noise as a pixel-wise subtraction between the current image
pixel and the denoised one. The mean value and the standard deviation are applied
to the different denoised versions of the image in order to obtain a total of 26 noise
features used as inputs to the learning model. In order to validate our results, we plot
on the sub-images of the scenes Bar and Chess, the values of mean and the standard
deviation versus each sub-image per block for the averaging filter of size 3 x 3 as
shown in Fig.5.1. We found that the blocks of the scene Bar with 512 x 512 that
the block 5 and blocks 9—16 are in the set of maximum of high-frequency noise; the
others blocks are in the set of minimum of high-frequency noise. For the scene Chess
with 800 x 800 resolution, blocks 1-3 and blocks 5-9 are in the set of maximum
of high-frequency noise and the others blocks are in the set of minimum of high-
frequency noise. The same behaviors are observed by applying the other filters on
the other scenes. We can notice the values of these features monotonically change
until they reach stable thresholds when the sub-images become noiseless, so they are
very important to consider as input to the learning models.
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Fig. 5.1 Mean and standard 1"
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5.4.2 Inductive SVM Model Selection

To visually verify the robustness of our model, we first do experiments on the scenes
with512 x 512 resolutions Bar, Class, Cube, DeskRoom1, Sponza, and DeskRoom?2.
The input of the SVM model is the luminance vector of size 128 x 128. The support
vector machine model with noise feature (FSVM) uses as input a set of noise quality
indexes vector of size 26. The model output is —1 if the image is considered noisy
and +1 if the image is considered less affected by noise. We choose for SVM radial
basis functional kernels (Constantin et al. 2015a). We do a V-times cross-validation
with the method of raising the exponent on the scenes Bar, Class, and Cube in order
to obtain good precision (Fernandez-Maloigne et al. 2012; Hsu et al. 2003). The
sub-images set is split into 303 groups each of size 16 sub-images. Figure 5.2 shows
the mean number of support vectors and the precision obtained for different values
of the parameter C. It is quite clear that the optimal value of C is equal to 4 when
SVM and FSVM are applied. Figure 5.3 shows the variation of the learning precision
and the mean number of support vectors with respect to the standard deviation o for
SVM and FSVM. Table 5.1 shows the models of optimal parameters.

Later, we run the inductive learning algorithm by selecting the first 5 blocks of
the scene Bar as the initial labeled sub-images. We find that the initial labeled sub-
images set has an influence on the choice of sub-images class central and on the

Table 5.1 Optimal parameters for the learning models

Learning model Optimal standard Precision % Mean number of
deviation kernels

SVM 50 96.24 1750

FSVM 70 90.7 1970
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Fig. 5.2 Precision and average number of SVs for different values of the parameter C. Scenes with
512 x 512 resolution
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Fig. 5.3 Scenes with 512 x 512 resolution. Precision and average number of SVs for different
values of standard deviation

performance behavior of the inductive learning algorithm as well. That is why, we
have chosen the scene Bar which contains different levels of noise in order to get a
better precision. The remaining sub-images of the scene Bar and the sub-images of
the scenes Class, Cube, DeskRoom1, Sponza, and DeskRoom?2 are selected as being
the initial unlabeled sub-images. Because the semi-supervised learning algorithm
has totally iterated 10 times, 20 sub-images centers are added to the set of labeled
sub-images with their predicted labels in case of SVM and FSVM. Here, we find that
20 sub-images centers (N = 10) are sufficient for the inductive learning algorithm
to achieve a good performance. During active learning, 1091 labeled sub-images are
added to the set of labeled images when SVM is used whereas 3212 are added in
case FSVM is used in order to obtain a good convergence with a maximum precision
equal to 99%. Figure 5.4 shows the variation of precision during the learning process
for the SVM and FSVM inductive learning models (SVM-IL and FSVM-IL). In
case of SVM-IL, we find that the precision oscillates at the beginning and increases
monotonically after querying some pertinent sub-images until it reaches its maximum
after 1040 iterations. This might be due to the fact that in this space, the two classes
of sub-images overlap severely and are difficult to be classified.
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Fig. 5.4 Variation of precision during the iteration of active learning algorithm for SVM-IL (a)
and FSVM-IL (b)

We also find that the number of support vectors is equal to 983 and 2584 for
SVM-IL and FSVM-IL respectively. It is clear that the SVM-IL model assures a
good convergence by using a number of kernels less than FSVM-IL.

5.4.3 Experiments Using Inductive Learning

To verify the accuracy of our inductive learning models, we first test the inductive
learning algorithm on the scenes with 512 x 512 resolution. We use the sub-images
of the scenes Bar and Class to train the SVM and FSVM models. The learning set
contains 3232 sub-images computed with different noise levels and de-noised sub-
images. Once the training process has been performed, we find that the number of
support vectors is equal to 712 and 1560 respectively for SVM and FSVM. It is clear
that these models use a number of kernels less than inductive learning models do.
This drawback can be solved by applying parallel computation at the hidden layer
of the network in order to minimize the required questioning time for the inductive
learning models, so they can be used to make online decisions on photo-realistic
images scrolling on a video system. Next, the learning models are evaluated on the
global illumination scenes Bar, Class, Cube, DeskRoom1, Sponza, and DeskRoom?2.
Figure 5.5 shows the variation of the mean square error for the optimal architectures
which measures the average of the squares of the deviations. That is, the difference
between the actual values of the perception models and the desired ones predicted
by the HVS (Sect.5.2). The mean square error range for the learning models is
listed in Table5.2. It is shown that SVM-IL model achieves the best performance
on the scenes Class, Cube, DeskRoom1, Sponza, and DeskRoom?2. For this model,
the mean square error is between 0 and 0.09 for all sub-images. However, the SVM
model gives better performance than the SVM-IL only on the scene Bar because it is
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Fig. 5.5 Variation of the mean square error for each sub-image of the scenes with 512 x 512
resolution Bar, Class, Cube, DeskRoom1, Sponza, and DeskRoom?2

used as the learning scene for this model. Moreover, this experiment shows that the
FSVM-IL model performs better than the FSVM does on the testing scene. It should
be highlighted that the SVM-IL and the FSVM-IL models provide mean square errors
less than the SVM and the FSVM do respectively. We also make a comparative study
between the actual thresholds of the learning models and the desired ones obtained by
the human vision system (HVS). Figure 5.6 also shows that the SVM-IL and FSVM-
IL models give a good stopping criterion for the global illumination algorithm on
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Table 5.2 Mean square error range for each sub-image on the scenes with 512 x 512 Bar, Class,

Cube, DeskRoom]1,

Sponza, and DeskRoom?2

5 Reduced-Reference Methods

Scenes SVM SVM-IL FSVM FSVM-IL
Bar 0 [0 —0.01] [0—0.15] [0—0.13]
Class [0 —0.07] [0 —0.02] [0—0.14] [0—0.14]
Cube [0 —0.07] 0 [0—0.13] [0—0.11]
DeskRoom1 [0 —0.06] 0 [0 —0.07] [0 —0.05]
Sponza [0 —0.07] [0 —0.01] [0—0.1] [0 —0.07]
DeskRoom?2 [0.04 —0.13] [0 —0.09] [0 —0.09] [0 —0.07]

all the scenes and achieves a better convergence than the SVM and FSVM can.
Moreover, this experiment shows that the SVM-IL’s performance is better than the
FSVM-ILs.

We also do experiments on the scenes with 800 x 800 resolution computed with
diffuse and specular rendering in order to test the learning models capability. The
input to SVM is the noise feature vector of size equal to 200 x 200, whereas the
FSVM model uses the noise quality indexes vector of size 26 as input. We also do
a V-times cross-validation technique by considering the sub-images of the Kitchen
and BathRoom1 scenes for the training and the evaluation processes. The set of
sub-images is split into 235 groups, each of size 16 sub-images. Figure 5.7 shows
the mean number of support vectors and the precision obtained for different values
of C. Figure 5.8 shows the variation of the learning precision and the mean number
of support vectors with respect to the standard deviation. It is clear that the optimal
value of C is equal to 8. The optimal value of standard deviation is equal to 70, the
mean number of support vectors is equal to 1770 and the maximum precision is equal
to 97.50. In case of FSVM, the set of sub-images is split into 630 groups, each of
size 16 sub-images. In this case, the optimal value of C is equal to 8. The optimal
value of standard deviation is equal to 120, the mean number of support vectors is
equal to 5350, and the maximum precision is equal to 83.22 (Figs.5.7 and 5.8).

As previously, the initial set of labeled sub-images is initialized to the first 5
blocks of the scene BathRooml. This scene is used because it contains different
levels of noise and, at the same time it gives a good precision of the inductive learning
algorithm. The unlabeled set is initialized to the remaining sub-images of the global
illumination scenes with 800 x 800 resolution. Later, we apply the inductive learning
algorithm with the parameters N = 10 and M = 5. During the active learning, 2386
labeled sub-images are added to the set of labeled sub-images in case of SVM-IL
and 3285 are added in case of FSVM-IL in order to obtain a good convergence with
a precision equals to 99% and 93.4% for SVM-IL and FSVM-IL respectively. We
find that the number of support vectors is equal to 1402 and 2066 for SVM-IL and
FSVM-IL respectively. We train the SVM and the FSVM models on the sub-images
of the scenes Kitchen and BathRoom1. The learning set contains 3760 sub-images
computed with different noise levels. As a result, we find that the number of support
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Fig. 5.6 Variation of the actual thresholds of the learning models and the desired ones obtained by
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Sponza, and DeskRoom?2

vectors is equal respectively to 2367 and 1380 for SVM and FSVM. It is shown

that SVM-IL model assures a good convergence, using for the learning process, a

number of labeled sub-images less than the other learning models. That is why, it uses
a number of kernels less than FSVM-IL, SVM, and FSVM models. Next the path
tracing algorithm is applied where at each iteration, a different number of paths are
added to the un-converged sub-images depending on the selected scene (Sect.5.2).
For each block of the selected scenes, we plot the variation of the mean square
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error (Fig.5.9), the thresholds of the learning models, as well the desired thresholds
obtained by the human vision system (HVS) (Fig.5.10).

The mean square error range for the learning models are listed in Table5.3. It
is clear that the SVM-IL model achieves the best performance on all the scenes
with 800 x 800 resolution. The mean square error is between 0 and 0.03 for the sub-
images of the scenes Kitchen, Chess, BathRoom1, Pnd, BathRoom?2, and DeskRoom,
excepting block 5 of the scene SdbCenter where the SVM-IL model assures same
performances as SVM with a mean square error equal to 0.15. It should be also
noticed that the FSVM-IL model provides mean square errors less than the FSVM’s
on all the scenes with 800 x 800 resolution excepting the sub-images of the scene
kitchen because it is used as the learning scene for this model. This study also shows
that the SVM-IL model assures threshold values similar to those of the Human Vision
System (HVS) and gives a good stopping criterion for global illumination algorithms
on all the used scenes containing different characteristics and noise levels.
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5.4.4 Comparison with the Fast Relevance Vector Machine

Previous work proposed fast relevance vector machine (FRVM) models for stochastic
noise detection in case of synthetic images with 512 x 512 resolution (Constantin
et al. 2015a). The FRVM learning algorithm introduced by Tipping is a probabilistic
approach that uses a number of kernel functions less than the SVM. This small
number does not necessary satisfy the needed Mercer’s condition (Tipping 2003).
However, it is typically much slower in convergence than SVM. It was shown that
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the FRVM is much better in performance than the SVM in case of noise perception in
global illumination (Constantin et al. 2015a). In order to make a comparative study
between the inductive learning and the FRVM models, the scenes Bar and Class
are used for the optimization and the learning processes. In fact, considering only
one scene as our previous work is definitely not enough for best optimization and
evaluation. We use the V-times cross-validation technique in order to find the optimal
value of standard deviation o for FRVM and FFRVM (FRVM with 26 features). The
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Table 5.3 Mean square error range for each sub-image on the scenes with 800 x 800 Kitchen,
Chess, Pnd, BathRoom1, BathRoom2, and DeskRoom

Scenes SVM SVM-IL FSVM FSVM-IL
Kitchen 0 [0 —0.03] [0 —0.09] [0.01 —0.15]
Chess [0.15 = 0.27] [0 —0.03] [0.07 — 0.19] [0.03 —0.15]
BathRooml [0—0.15] [0 —0.15] [0—0.13] [0—0.07]
Pnd [0.05 —0.13] [0 —0.01] [0—0.11] [0—0.11]
BathRoom2 [0.07 —0.35] [0 —0.03] [0—-0.11] [0—0.11]
DeskRoom [0 —0.05] [0 —0.03] [0 —0.09] [0 —0.05]
Maxinmum precision = 95 5 Mean Number of Relevance Vectors = 288
Maniomen precision = 92 Mean Number of Support Vectors = 14
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Fig. 5.11 Precision and average number of RVs for different values of Standard Deviation in case
of scenes with 512 x 512 resolution

Table 5.4 Optimal parameters for the learning models

FRVM Optimal standard Precision % Mean number of
deviation kernels

FRVM 100 95.5 288

FFRVM 6 92 14

set of sub-images is split into 202 groups, each of size 16 sub-images (Fig.5.11).
The optimal parameters for FRVM models are shown in Table 5.4.

Then, we plot the actual thresholds of the learning models for each block for
the images with 512 x 512 resolution and the desired ones obtained by the HVS.
These results show that the inductive model SVM-IL is better in performance than
the FRVM and the FFRVM models. Moreover, the FSVM-IL model is better in
convergence than FRVM and gives similar results as the FFRVM do. However, the
FRVM models use a number of relevance vectors less than the SVM-IL and FSVM-
IL models’ (Fig.5.12). So in order to minimize the questioning time of the SVM-IL
model during real-time application, a parallel computation using GPU card is a
requirement.
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5.5 Conclusion

This chapter introduced the application of the inductive learning algorithm for noise
perception in the global illumination algorithms. The introduced approach selects
the pertinent images for the inductive learning model by using active learning to
select class boundary images, and the semi-supervised learning to select class cen-
tral images. Thus, it can be applied to a large dataset of around 15,400 images,
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and we show that the proposed technique offers high prediction on the testing base
when compared with the SVM and FRVM machines. By using an inductive learning
machine approach, the learning models improve their performance by minimizing
manual labeling and selecting the most pertinent images for the noise perception algo-
rithm. A GPU card using parallel computing can be applied to optimize inductive
learning and make online decisions. This new learning technique makes it possible
to study how to easily manage more highly indirect lighted environments such as
the use of a new noise descriptor. In addition to this, the realization of a new FRVM
inductive learning model for global illumination algorithms should be a new research
direction. Finally, our approach requires building a relatively small number of images
set computed with different rendering algorithms. This work is still difficult to real-
ize because of the time required for scene rendering, but the gain of learning time is
important compared with full-reference techniques.
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Chapter 6 ®)
No-Reference Methods and Fuzzy Sets e

This chapter presents a new noise level estimator, based on interval Type-2 Fuzzy Sets
(IT2 FSs) and devoted to computer-generated images. This model can then be used in
any progressive stochastic global illumination method in order to estimate the noise
level of different parts of any image. A comparative study of this model with a simple
test image demonstrates the good consistency between an added noise value and the
results from the noise estimator. The proposed noise estimator results have been
too compared with full-reference quality measures (or faithfullness measures) like
SSIM and give satisfactory performance. This kind of technique is interesting when
a low number of learning samples are available, or to obtain a quick convergence of
computer-generated images before a more complete treatment.

6.1 Introduction

Preprocessing of digital images with fuzzy filtering techniques often gives good
results. In this chapter, we present an interesting application of interval type-2 fuzzy
sets for image treatment (quality assessment and noise estimation). Indeed, interval
type-2 fuzzy sets are effective to take different kinds of uncertainty into account
(imprecision, noise, etc.). The great family of entropies provides some interesting
tools to take decision in uncertain environment. The main idea of the presented
technique is to use fuzzy entropy to detect noise instead of noise features of image
in the case of full and reduced-reference learning methods. Fuzzy entropy is then
used to build a new noise estimator, based on interval type-2 fuzzy sets and devoted
to natural and computer-generated images. This model can then be used to estimate
the noise level of different kinds of noise (impulsive, Gaussian, speckle noise, and
perceptual noise in computer-generated images). A comparative study of this model
with test images demonstrates the good consistency between an added noise value
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and the results from the noise estimator. This new framework can be easily extended
to other applications like information retrieval, database querying, etc.

Perceptual noise is not well known at the moment. According to us, it is cer-
tainly a mixture of different kinds of noises as Gaussian noise, Perlin noise, etc., and
image information incompleteness. Uncertainty is classically classified using three
conceptually distinctive characteristics, fuzziness (blur), randomness, and incom-
pleteness. This classification is interesting for many applications, like sensor man-
agement (image processing, speech processing, and time series processing), practical
decision-making, and particularly for this work (computer-generated image).

Fuzziness, one of the features of uncertainty, results from the lack of sharp dis-
tinction of the boundary of a set and is commonly modeled using Fuzzy Sets (FSs)
introduced by Zadeh (1965). The first attempt to quantify the fuzziness was made in
1968 by Zadeh (1968), who introduced fuzzy entropy. Fuzzy entropy is one of the key
techniques for fuzziness (vagueness and imprecision) management. Fuzzy sets are
interesting tools to evaluate a data element along with the information contained in
its neighborhood (Bigand and Colot 2010; Nachtegael et al. 2005; Babu and Sunitha
2011) and they make it possible to manage the imprecision that is present in discrete
images. Typical membership functions of fuzzy sets are often generated based on
fuzzy entropy.

These techniques consider that measurements have inherent vagueness rather
than randomness. However, there remain some sources of uncertainty in ordinary
(or precise) fuzzy sets (see Mendel and John 2002): in the fuzzy set design (e.g.,
in symbolic description), in the fact that measurements may be noisy or that the
data used to calibrate the parameters of ordinary fuzzy sets may also be noisy. So,
since fuzzy sets were introduced by Zadeh (1965), many new approaches treating
imprecision and uncertainty (which are naturally present in image processing (Bloch
1996)) were proposed (see Dubois and Prade 2005 for a rapid discussion about some
of these theories). Among these, is a well-known generalization of an ordinary fuzzy
set, the Interval-Valued Fuzzy Set (IVES), firstintroduced by Zadeh (1975). In Bigand
and Colot (2010), we have shown that ultrafuzziness index (which is also called IVFS
entropy in the sequel) is a particularly adapted tool to detect relevant information in
noisy images and makes impulse noise removal from images possible. IVFSs enable
to model the lack of knowledge of the expert when constructing the membership
function of Fuzzy Sets (FSs) used for image denoising. We have also shown (Bigand
and Colot 2012) that this method is efficient to remove speckle noise. We have
recently applied it to define a no-reference quality metric of computer-generated
images (Delepoulle et al. 2012) (and its application to denoising).

Incompleteness often affects time series prediction (time series obtained from
marine data (salinity, temperature, etc.)). Wilbik and Keller recently show that a
fuzzy similarity measure exists between sets of linguistic collections (Wilbik and
MKeller 2012). They also proved that (Wilbik and Keller 2012) this fuzzy similarity
measure is a new metric used to detect abnormalities or state change for huge time
series. We have also shown that IVFSs make it a global uncertainty modelization
possible for image processing (Bigand and Colot 2010).
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In many algorithms devoted to image processing, estimation of noise present in
the image is necessary to process the image optimally. This work is mainly devoted to
IVFSs to deal with these three dimensions of uncertainty (fuzziness, randomness, and
incompleteness). We illustrate the proposed technique through two difficult tasks,
Gaussian noise estimation and removal in digital images and the management of
global illumination methods.

The main objective of global illumination methods is to produce synthetic images
with photo-realistic quality. As we saw these methods are generally based on path-
tracing theory in which stochastic paths are generated from the camera point of view
through each pixel toward the 3D scene.

It is so obvious that automatically measure of image quality is very important to
characterize images visual quality. They are of great interest in image compression
(JPEG models) and in image synthesis. Image quality metrics are usually categorized
into three models in the literature: full-reference (such as the signal-to-noise ratio
SNR and structural similarity index measure SSIM (Wang et al. 2004)), no-reference
(image quality is estimated without access to reference images (Zhang et al. 2011;
Ferzli and Karam 2005; Delepoulle et al. 2012)), and reduced-reference models
(Wang and Simoncelli 2005; Li and Wang 2009; Lahoudou et al. 2010). However, the
proposed models, which are based on theoretical models of noise, present sensitivity
limits in global illuminations.

On the other hand, the fact that synthetic images are generated from noisy to
correct images may lead to a noise estimation based method. Noise models have
not been heavily studied concerning synthetic images, and they are often difficult
to establish concerning CCD cameras images. Olsen (1993) showed that the most
reliable estimate is obtained by prefiltering the image to suppress the image structure
and then computing the standard deviation value (of white additive noise) from the
filtered data. Another possible way to noise estimation is to use interesting results
of recent efficient filters, as the one we proposed in (Bigand and Colot 2010). So
this chapter focuses on the use of a new noise estimation model to detect and to
quantify stochastic noise in a synthetic image. The chapter is structured as follows.
Section 6.2 describes the uncertainty detection technique we use that is to say fuzzy
entropy. Section 6.3 introduces the design of the IVFS image noise estimation, and
Sect. 6.4 shows some experimental results obtained by the estimated noise model.
Finally, the work is summarized with some conclusions and perspectives in Sect. 6.5.

6.2 Interval-Valued Fuzzy Sets

The concept of a type-2 fuzzy set was introduced first by Zadeh (1975) as an another
possible extension of the concept of an FS. Type-2 fuzzy sets have membership
degrees that are themselves fuzzy and have been proved of being capable of enhancing
uncertainty handling abilities of traditional type-1 fuzzy sets. So they have been
extensively applied to image processing (Sussner et al 2011; Jurio et al. 2011; Bigand
and Colot 2010). Let us start with a short review of basics concepts related to IVES.
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Let S([0, 1]) denote the set of all closed subintervals of the interval [0, 1], an Interval
Type-2 Fuzzy Set (IT2FS or Interval-Valued Fuzzy Set (IVFS): the two terms are
equivalent in the following) A in a non-empty and crisp universe of discourse X
is a mapping from X to S (Zadeh 1975; Bustince et al. 2009). For each IVFS A,
we denote by §4(x) the amplitude of the considered interval (§4(x) = pay(x) —
Uar(x)). Sononspecific evidence (an interval of membership values) for x belonging
to a linguistic value A is identified by IVFS.

6.2.1 Uncertainty Representation

The uncertainty of membership function of a precise FS is modeled using the length
of the interval §(x) in an IVFS (the longer §(x) the more uncertainty), so choice of
functions py (x) and @y (x) is crucial. We proposed to use interval-valued fuzzy sets
with the following functions py (x) and wp (x):

e upper limit: py (x) : py(x) = [p(x; g, 0)1"%, (with & = 2),
e lower limit: pup (x) @ pp(x) = [u(x; g, 0)]%,

where ©(x; g, o) is a Gaussian (FS) fuzzy number (u(x; g, o) is represented in
Fig.6.1) centered on g and which support is set using a free constant parameter o

(x €[0,G—1)):
1 (x—g 2
n(x; g,0) =exp —§< > . 6.1
o

Indeed, we know since Babaud et al. (1986) that Gaussian kernel is the only linear
filter that gives a consistent scale-space theory.
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(a) Membership function of an IVFS (b) Ultrafuzziness evolution vs. samples num-

ber, block 0

Fig. 6.1 IVFS membership function and ultrafuzziness evolution according to the number of paths



6.2 Interval-Valued Fuzzy Sets 75

6.2.2 IVFS Entropy

The process of selecting the necessary information for image processing must lead
here to the correct estimate of the image uncertainty. The present work demonstrates
an application of fuzzy set theory to estimate noise power, with the highest accuracy
possible (so a good evaluation of uncertainty is essential). The terms fuzziness degree
(Kaufmann 1975) and entropy (Deluca and Termini 1972) provide the measurement
of uncertainty in a set and are important issues in fuzzy logic studies. These well-
known concepts have been developed in (Bigand and Colot 2010). Nevertheless, the
total amount of uncertainty is difficult to calculate in the case of Fuzzy Sets (FSs),
and particularly when images (represented using an FS) are corrupted with noise, so
we proposed to use the IVFS imprecision degree Ind(A) of an IVFS A in X:

<

Ind(A) =) [y () — pr ()] (6.2)

i=1

It is assumed that an observed image I is defined on a M x N square lattice, and
each pixel (o, p) takes a gray-level value g (o, p) (with G gray levels g € [0, G — 1]).
For an image subset / C X, the histogram %(g), Tizhoosh (2005) intuitively proved
that it is very easy to extend the previous concepts of FS (linear index of fuzziness
proposed by Pal and Bezdek (1994)) for IVES, and to define the (linear) index of
ultrafuzziness as follows:

G_
[A(x). (uy(x) — prp(x))] (6.3)
0

—_

1

Fo=wun

<

oq

The previously defined IVES is shifted over the interval [0, G — 1] of the his-
togram of the image by varying g but keeping o fixed. Among the numerous frame-
works of uncertainty modeling, this last equation seems to be an interesting tool
for image processing, especially for noise estimation. The evolution of the global
maximum M AX (I") of this index according to the number of paths of the block 0
(Fig.6.4) is presented Fig. 6.1. Using the same definition of the linear index of ultra-
fuzziness, we used this performing index to propose a generalization of Gaussian
kernel filtering (Bigand and Colot 2010). In Delepoulle et al. (2011), we illustrated
that I" (x) can be used as a global no-reference image metric when the image is clean
and was compared with a psycho-visual score with success. In the following, we
show that I"(x) increases if the image becomes less and less noisy and may be used
in a noise estimation scheme.
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6.3 IVFS for Image Noise Estimation

6.3.1 Design of the IVFS Image Noise Estimation

In this presentation, it is assumed that the noise corrupting image [/ is additive,
stationary, and has zero mean (i.e., white noise):

I(o, p) = f(o, p) +n(o, p), (6.4)

where f is the ideal image, I is the observed image (previously defined), and 7 is
the noise component. The goal is to estimate the variance (power) var(n) of 7.
Many papers in literature present algorithms to estimate the features of noise in
digital images (Jolion et al. 1990; Rank et al. 1999; Starck et al 1998; Deng et al.
2007). These methods attack the estimation problem in one of the two ways:

e by filtering I to suppress the image structure and then computing var (n) from the
filtered data

e by computing var(n) from the variance of I in a set of image regions initially
classified as showing little structure.

This work presents a method belonging to the first family, starting with the filter-
ing of the image /. In Delepoulle et al. (2011), we defined a new image filter using
ultrafuzziness index, to take into account simultaneously the local and global prop-
erties of the pixels. In the present work, we show that this index is also effective to
measure noise level in computer-generated images and can be used in images noise
estimation. By subtracting from / the filtered image J, a measure of the noise at each
pixel is computed as presented Fig. 6.2.

6.3.2 Proposed Scheme

Let be a computer-generated image 1. The global no-reference image metric taking
into account noise levels is divided into three steps.

In the first one, image I is divided into Ki patches I; (or blocks. A M x N gray-
level image I is divided into Ki nonoverlapping patches (m x n gray-level patch),
for example, a 512 x 512 image is divided into 16 nonoverlapping blocks of size
128 x 128). Each patch Iy is then analyzed using the local entropy I'*. To be coherent
with the overall method, we used the IVFS denoising algorithm we proposed in
Bigand and Colot (2010). This procedure is included in Algorithm 6 (this procedure
makes it possible to obtain the optimal value o of the Gaussian fuzzy number (see
Eq.6.1) for each patch). So the method operates like an unsupervised classification
method that affects noise-free pixels to K clusters (modes of the image) and noisy
pixels to a cluster: “noisy pixels”. Let g(o, p) denote the gray-level value of the pixel
(0, p) of a m x n noisy block. The noise detection process results in dividing the
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m: Noise variance
o: Computed noise power using Wiener filter

«: Computed noise power using IVFES filter
Noisy Image | 0.10
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(a) Filtering-based noise estimation  (b) Noise power estimation for simulated noisy im-
ages

Fig. 6.2 Noise power estimation scheme

histogram into different zones, according to the maxima of ultrafuzziness I,,,. So
pixels are classified into two groups: noise-free pixels (i.e., belonging to one of the
K modes) and noisy pixels. Noisy pixels are treated using the classical median filter
(“Med”, with a 3 x 3 window). The image restoration appears as follows:

g(o, p) if g(o, p) is noise-free
glo, p) = . . ) (6.5)
Med(o, p) if g(o, p) is noisy.
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In the second step, once the denoising treatment on each block is made, the new
image J is obtained from the concatenation of the K; patches J;. In the third step,
once image I has been filtered into J, the noise power var (1) is easily computed (see
Algorithm 6).

6.3.3 Algorithm and Implementation

The image noise estimation based on IVFS and measure of ultrafuzziness I" is given
by Algorithm 6.

Algorithm 6 Image quality measure

Require: an input noisy M x N gray-level image I, divided into Ki non-overlapping patches
(m x n gray-level patch) and calculate the local entropy I' for each patch k (0 < k < Ki)

1: Select the shape of MF

2: Compute the k-patch image histogram /(g)* (normalized to 1)

3: Initialize the position of the membership function

4: Shift the MF along the gray-level range

5:7k <0

6

7

8

max .
: for each position g do

Compute py(g) and ur(g)

L—1
Compute I'(g)F = L Zﬂh(g)k x [y (g) — 1L (g)]
=

9: if I'* < I'(g)* then

max

10: Ik« gk

11:  endif

12:  Keep the value I'¥, . for patch k and optimal value o
13: end for

14: Apply the FS parameter o to get a denoised patch Ji

15: Iterate the number of the patch: k£ + 1

16: Compute the new image (J)

17: For each denoised patch, keep the local metric I"(g)*. Compute the value I” for global image

Ki
Jwith I'(¢) = g . I'(®)"
" k=1

Ensure: The filtered irgage J
Ensure: The difference image / — J and the noise power estimation var (1)

The implementation of image noise estimation based on IVFS is illustrated by
the following experiment. Let us consider a synthetic test patch (classical “boston”
image, see Fig.6.3), belonging to the Categorical Image Quality (CSIQ) database
(Wang et al. 2004) developed at Oklahoma State University. For the sake of brevity,
only one representative image is presented here, and white Gaussian noise with dif-
ferent variances o> added to this clean patch (the test patch with white Gaussian
noise with o = 0.1 is presented in Fig. 6.3). The noisy image is filtered using Wiener
filter and IVFS filter and presented in Fig.6.3. Figure 6.2 presents the evolution of
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(a) Original Boston Image

(c) Filtered image using Wiener filter (d) Filtered image using IVFS

Fig. 6.3 Obtained results with real image “Boston”

computed noise variances using the Wiener estimation method and the estimation
method using IVFS filter we propose (100 simulations are carried out with indepen-
dent noise realizations). From this set of experiments on the test patch, we can see
that the value of the noise power var(n) drops monotonically as the image content
becomes more and more noisy. In other words, it can be thought that var () is a better
indicator of noise power than Wiener estimation (particularly for small noise power).
These good results are in the same way that the results we presented in (Bigand and
Colot 2010, 2012). They encouraged us to apply this method to the perceptual noise
that flaws computer-generated images.
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6.4 Experimental Results with a Computer-generated
Image

6.4.1 Image Database for Noise Estimation

The model is built on data corresponding to images of globally illuminated scenes.
The path-tracing algorithm was used in order to reduce noise (Shirley et al. 1996).
This algorithm generates stochastic paths from the camera to the 3D scene. For
each intersection of a path with the surface, a direction of reflection or refraction is
randomly extracted.

For each scene, several images were obtained, the first one being strongly noisy
and the last one being the reference image (Fig. 6.4). Generated images were com-
puted at 512 x 512 resolutions. The largest number of paths per pixel was set at
10100 which appeared to be sufficient for generating visually converged images.
Then, each of these images is opaque and virtually cut into nonoverlapping sub-
images of size 128 x 128 pixels. For the used test image, we thus get 16 different
sub-images.

Our goal is to study and develop a noise estimation method devoted to synthetic
images. Once noise power is estimated, we aim to propose a new image quality index
based on image noise power (instead of classical image features) and compare this
one with observed data (psycho-visual score) and classical reference quality metric
like SSIM. In order to test the performance of the proposed technique, some results
obtained with the computer-generated image named “Bar”, Fig. 6.4, are shown in this
presentation (other images were tested and same behaviors were observed, so they
are not presented here due to lack of space). This image is composed of homogeneous
and noisy blocks and is interesting to present some results.

In Fig.6.5, the first image (middle left) is the noisy block 10, obtained at the
beginning of the process, and the second one (middle right) is the result obtained
with the IVFS filter.

The main idea of the work is the following: synthesis process is started with
a great noise level and a low entropy value. So the initial position of the synthesis
process is unknown but the observed behavior measured at each iteration of the image
synthesis process brings us information. The average information quantity gained at
each iteration is entropy. The measured entropy using IVFS, named ultrafuzziness,
seems to be an interesting measure of noise level and so supplies a noise power
estimation, also used as denoising scheme in the proposed image synthesis process.
The performances of the noise power estimation are now illustrated (particularly,
noise histograms show the decreasing of noise power).
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(a) Reference Image ”“Bar™’

(b) Noisy Image, block 0 (c) Reference Image, block 0

(d) Noisy Image, block 10 (e) Reference Image, block 10

Fig. 6.4 Original (noisy) and reference images
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(a) Noisy Image, block 10 (b) Filtered Image, block 10
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Fig. 6.5 Original and filtered blocks denoising using / V F Ss and noise evolution

6.4.2 Performances of the Proposed Method

Synthesis process is started with a great noise level and a low entropy value but
noise models are not available at the moment for computer-generated images. So a
quantitative comparison is difficult to assume. In order to verify the effectiveness
of the proposed noise model, a quantitative comparison with SSIM index has been
made. The measure of structural similarity for images (SSIM quality index (Wang
et al. 2004) has also been computed on the course of paths number as shown in
Fig. 6.5. This measure is based on the adaptation of the human visual system to the
structural information in a scene. The index accounts for three different similarity
measures, namely luminance, contrast, and structure. The closer the index to unity,
the better the result. It is easy to see that SSIM index is an opposite behavior according
to the noise power measure we propose. This comparison is made at the bottom (c)
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Fig. 6.6 Synthetic image generation from noise point of view

of Fig.6.5 for the noisy block 10 presented at the top of Fig.6.5, and it is easy
to verify that this behavior is assumed during image generation (from low sample
number to high sample number), that is to say, from high noise level to low noise
level (Fig. 6.5d).

To illustrate our work, we also present Fig. 6.6, for the noisy block 0, the noise
histogram estimation (for 1000 samples and at the end of the process), the images
I, J, f histograms (previously defined, /V), and the noise histograms (at 1000
samples).

‘We would like to highlight the advantages of the proposed noise power estimation:
this method is simple; it is parameter free and avoid additional procedures and training
data for parameter (var(n)) determination.
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6.5 Conclusion

Starting from the filter presented in (Bigand and Colot 2010), taking into account
the total amount of uncertainty present in computer-generated images using IVES,
a new noise estimation method is presented in this chapter. The method effectively
combines image histogram information with the spatial information about pixels of
different gray levels using an IVFS entropy technique. The good results we obtain
are particularly interesting in image synthesis to model specific noise affecting this
kind of images. This new method assumes no “a priori”’ knowledge of a specific input
image, no learning, and no numerous tunable parameters, yet it has good performance
compared to a psycho-visual method (Delepoulle et al. 2011). This qualitative noise
model seems effective but there remain some open questions to effectively establish
a link between the characteristics of noise affecting the image (noise level), and
to optimize noise power computation, particularly for high noise level. Computer-
generated image noise is not a Gaussian noise. So more extensive investigations on
other measures of entropy and the effect of parameters influencing the width (Ilength)
of the interval of IVFS are under investigation (to establish a link between this interval
and level and type of noise) toward an automatic noise quantification.
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Chapter 7 ()
General Conclusion and Perspectives e

7.1 Summary

High-quality computer-generated image generation techniques and the link between
these techniques and perceptual noise are presented in the first two chapters (Chaps. 2
and 3). These chapters also present the high-quality images we can obtain with photo-
realistic techniques on one hand and the difficulty to obtain a good visual quality
assessment (particularly due to the complexity of the algorithms based on Monte
Carlo methods) on the other hand.

HVS should be the better way to assess computer-generated images but the com-
plexity of these techniques requires machine learning at the moment. Machine learn-
ing, which is a subfield of artificial intelligence (AI) makes it possible to extract
knowledge from data. Thus, this is possible to obtain IQA from images, after a
learning stage. The main advantages of the presented techniques are the following:

e Time to decide if an image is noisy or not is very short;

e IQA is obtained in a very short time in the same way; and

e If necessary these techniques can be used previously to an HVS assessment that
makes it possible a short time to decide about IQA. Then, IQA can be refined in
a classical way (MOS for example) to obtain very high-quality images

The main drawback of this approach is that important databases with high num-
ber of samples are needed to train learning methods. Classical classifiers (RBFs
and SVMs) associated with noise features give good results for IQA (Chap.4) and
we also present RVM classifiers that give very good results due to their ability to
deal with uncertainty brought by data. Then, new machine learning techniques (par-
ticularly inductive learning) are presented in the following chapter. This technique
makes it possible to deal with huge image databases (using active learning and
semi-supervised concepts) and large size images. For ending (Chap. 6), we present a
no-reference method that gives good result using fuzzy entropy to set up noise level
without noise features learning (fuzzy reasoning is another subfield of Al).
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7.2 Perspectives

A future research way could be using deep learning to better characterize noise
features. In fact, Convolutional Neural Networks (CNN) can be used as feature
extractor. Some authors have already used CNN to learn and extract classical features
with success (leaf features for plant classification, special image features, etc.). This
technique is under development to learn useful noise features directly from the color
(computer-generated) images. It can be also applied to 3D (or stereoscopic) images,
since CNN is less sensitive to the curse of dimensionality. The drawback of this
technique is that a huge number of labeled samples are needed (labeled samples are
costly to obtain in the case of image synthesis).

Considering 3D computer-generated images, the same questions are encountered
as for 2D images. Modeling this kind of images is even more complex than for 2D
computer-generated images. 3D databases are not yet sufficient (despite some 3D
CAD existing databases). So we have to establish some new datasets to complement
the learning base and validate our models. Then, applying learning models based on
noise features is also more difficult because 3D noise features seem to depend on the
considered point of view. Can we extend the different techniques presented in this
book from 2D to 3D images? In particular, new perceptive noise thresholds need to
be established. We also need to know if noise depends more on color representation
or on luminance, and how to calibrate human tests. Thus, this is a new and interesting
challenge. Uncertainty visualization techniques should certainly be of great interest
for noise perception and description as for Perlin noise perception in natural-scene
images. These techniques have to be investigated in parallel with machine learning
in the spacial case of computer-generated images. It can bring a supplementary
information crucial to visualize uncertain scalar information in complex 3D scenes.
These challenges constitute an important future for the presented techniques.

Virtual reality (production line management in industry are now developed using
this technique), augmented reality, and joint audiovisual quality metrics (movie pro-
duction and interactive video games) are other domains where these techniques
should be interesting to apply to other tasks and can be directly used. The presented
methodology can be devoted to a large panel of applications in signal processing and
image processing, and the authors sincerely hope that this book will be useful for a
large number of people, practitioners, and researchers in these domains.
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